Having Specified Tube End Structure (e.g., Close-ended Shell Or Open-ended Tube, Etc.) Patents (Class 977/743)
  • Patent number: 8923029
    Abstract: The field programmable read-only memory device includes a memory cell having a switching element for storing bit information. The switching element provides a switchable electrical connection between a word line and a bit line and includes a static body and a movable connecting element. The switchable electrical connection is non-volatile.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 30, 2014
    Assignee: Thomson Licensing
    Inventors: Meinolf Blawat, Holger Kropp
  • Patent number: 8865102
    Abstract: A method of producing a carbon material which is mainly composed of graphene-containing carbon particles is provided. The method includes a step of producing carbon particles from an organic material by maintaining a mixture containing the organic substance as a starting material, hydrogen peroxide and water under conditions of a temperature of 300° C. to 1000° C. and a pressure of 22 MPa or more. The method further includes a step of heat-treating the carbon particles at a higher temperature than the temperature maintained in the carbon particle producing step. The carbon material produced by the present method has a structure in which substances such as ions can easily enter and leave the graphene structures of the carbon particles, making the carbon material be useful as active materials of secondary batteries and electric double layer capacitors.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 21, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Morinobu Endo, Yong Jung Kim, Akira Tsujiko
  • Publication number: 20140302322
    Abstract: Disclosed are methods for decapping single wall carbon nanotubes and purifying the decapped single wall carbon nanotubes. The disclosed methods include the steps of oxidizing the single wall carbon nanotubes to remove the terminal end cap and subsequently acid washing the single wall carbon nanotubes to remove the catalyst particles. The resulting carbon nanotubes have improved BET surface area and pore volume.
    Type: Application
    Filed: August 28, 2012
    Publication date: October 9, 2014
    Inventors: Ricardo Prada Silvy, Yongqiang Tan
  • Patent number: 8809675
    Abstract: A solar cell system includes a number of P-N junction cells, a number of inner electrodes, a first collecting electrode, a second collecting electrode and a reflector. The number of the P-N junction cells is M. M is equal to or greater than 2. The M P-N junction cells are arranged from a first P-N junction cell to an Mth P-N junction cell along the straight line. The P-N junction cells are arranged in series along a straight line. The number of the inner electrodes is M?1. At least one inner electrode includes a carbon nanotube array. A photoreceptive surface is parallel to the straight line. A reflector is located on an emitting surface opposite to the photoreceptive surface.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8765565
    Abstract: According to one embodiment, a nonvolatile memory device includes a selection element layer and a nanomaterial aggregate layer. The selection element layer includes silicon. The nanomaterial aggregate layer is stacked on the selection element layer. The nanomaterial aggregate layer includes a plurality of micro conductive bodies and fine particles dispersed in a plurality of gaps between the micro conductive bodies. At least a surface of the fine particle is made of an insulating material other than silicon oxide.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: July 1, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Aoyama, Kazuhiko Yamamoto, Satoshi Ishikawa, Shigeto Oshino
  • Patent number: 8692716
    Abstract: A method of fabricating an antenna. In one embodiment, the method includes the steps of providing a substrate treated with a plasma treatment, providing a nanoparticle ink comprising nanoparticles, painting the nanoparticle ink on the substrate to form an antenna member in which the nanoparticles are connected, determining a feed point of the antenna member, and attaching an feeding port onto the substrate at the feed point to establish a contact between the feeding port and the antenna member.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 8, 2014
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Hussain Al-Rizzo, Taha Elwi, Daniel Rucker
  • Publication number: 20140079360
    Abstract: A fiber optic cable is disclosed that includes an optic fiber contained within a nanotube. A graphene layer covers an end-surface of the optic fiber for wear protection.
    Type: Application
    Filed: April 24, 2013
    Publication date: March 20, 2014
    Inventor: Tyson York WINARSKI
  • Patent number: 8592732
    Abstract: Apparatuses and techniques relating to a resistive heating device are provided.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 26, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8562935
    Abstract: The present invention is directed towards methods (processes) of providing large quantities of carbon nanotubes (CNTs) of defined diameter and chirality (i.e., precise populations). In such processes, CNT seeds of a pre-selected diameter and chirality are grown to many (e.g., hundreds) times their original length. This is optionally followed by cycling some of the newly grown material back as seed material for regrowth. Thus, the present invention provides for the large-scale production of precise populations of CNTs, the precise composition of such populations capable of being optimized for a particular application (e.g., hydrogen storage). The present invention is also directed to complexes of CNTs and transition metal catalyst precurors, such complexes typically being formed en route to forming CNT seeds.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 22, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Andrew R. Barron, James M. Tour, Howard K. Schmidt, W. Edward Billups, Christopher A. Dyke, Valerie C. Moore, Elizabeth Whitsitt, Robin E. Anderson, Ramon Colorado, Jr., Michael P. Stewart, Douglas C. Ogrin, Irene M. Marek
  • Patent number: 8558311
    Abstract: A dielectric material is disclosed comprising a plurality of substantially longitudinally oriented wires which are coupled together, wherein each of the wires includes a conductive core comprising a first material and one or more insulating shell layers comprising a compositionally different second material disposed about the core. In one embodiment, a dielectric layer is disclosed comprising a substrate comprising an insulating material having a plurality of nanoscale pores defined therein having a pore diameter less than about 100 nm, and a conductive material disposed within the nanoscale pores.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: October 15, 2013
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Jeffrey Miller, David P. Stumbo
  • Patent number: 8512668
    Abstract: To provide a method for separating metallic CNT and semiconducting CNT by treating a CNT-containing gel or a CNT dispersion as combined with a gel, according to a physical separation means to thereby make semiconducting CNT exist in gel and metallic CNT exist in solution, in which the semiconducting CNT adsorbed by gel are collected in a more simplified manner not dissolving the gel. A CNT-containing gel or a CNT dispersion combined with a gel is treated according to a physical separation means of a centrifugal method, a freezing squeezing method, a diffusion method or a permeation method, to thereby make semiconducting CNT exist in gel and metallic CNT exist in solution so that the metallic CNT and the semiconducting CNT are separated from each other, and further, a suitable eluent is made to react on the gel that adsorbs semiconducting CNT to elute the semiconducting CNT from the gel.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 20, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Takeshi Tanaka, Hiromichi Kataura, Huaping Liu
  • Patent number: 8501233
    Abstract: The present invention relates to compositions and methods for treating cancer and, in particular, to composition and methods comprising nanostructures. In one embodiment, the present invention provides a composition comprising a mixture, the mixture comprising at least one nanoparticle and at least one chemotherapeutic.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 6, 2013
    Assignees: Wake Forest University, Wake Forest University Health Sciences
    Inventors: David Loren Carroll, John H. Stewart, IV, Nicole H. Levi
  • Publication number: 20130106431
    Abstract: An ionization vacuum gauge includes a cathode, an anode and an ion collector. The ion collector component is located at one side of the anode component and spaced from the anode component. The cathode component is located at another side of the anode component and includes an electron emitter, which extends toward the anode component from the cathode component. The electron emitter includes at least one carbon nanotube wire.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 2, 2013
    Inventors: PENG LIU, DUAN-LIANG ZHOU, CHUN-HAI ZHANG, JING QI, PI-JIN CHEN, SHOU-SHAN FAN
  • Patent number: 8404207
    Abstract: Disclosed are a method and an apparatus for separating metallic CNT and semiconducting CNT, comprising treating with a physical separation means of centrifugation, freezing-thawing-squeezing, diffusion, permeation or the like using a gel containing CNT as a dispersed and isolated state (CNT-containing gel), to thereby make semiconducting CNT exist in gel and make metallic CNT exist in solution.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: March 26, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Tanaka Takeshi, Kataura Hiromichi
  • Patent number: 8398949
    Abstract: A novel carbon nanotube powder containing carbon nanotubes which have a roll-like structure, also novel carbon nanotubes having a roll-like structure, novel processes for the production of the carbon nanotube powders and of the carbon nanotubes, and their use as an additive or substrate for various applications are described.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 19, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Helmut Meyer, Heiko Hocke, Ralph Weber, Martin Schmid, Elmar Bramer-Weger, Matthias Voetz, Leslaw Mleczko, Reiner Rudolf, Aurel Wolf, Sigurd Buchholz
  • Publication number: 20130017607
    Abstract: A carrier substrate for primary tissue culture has a nanotube array. A tissue culture vessel has an outer vessel and a nanotube carrier substrate with a nanotube array, located within the outer vessel, wherein the surface roughness of the nanotube array is 1 nm to 100 nm. The nanotube array is used for in vitro culturing of primary tissue in connection with a tissue culture vessel for in vitro culturing of primary tissue and a method for in vitro culturing primary tissue, wherein a nanotube array is arranged essentially horizontal inside an outer cell culture vessel, so that openings of the nanotubes point at least in upward direction, the nanotube array is contacted with cell culture medium and an isolated primary tissue sample is placed on top-side on said nanotube array.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 17, 2013
    Applicant: UNIVERSITAET LEIPZIG
    Inventors: Stefan Mayr, Mareike Zink, Valentina Dallacasagrande, Josef Käs, Andreas Reichenbach
  • Patent number: 8350160
    Abstract: A structure includes a conductive film (12) provided in an underlying layer (10); and a carbon nanotube bundle (20) including a plurality of carbon nanotubes each having one end connected to the conductive film (12), wherein, at other end side of the carbon nanotube bundle (20), at least carbon nanotubes allocated at outer side of the carbon nanotube bundle (20) extend with convex curvatures toward the outside of the carbon nanotube bundle (20), and the convex curvatures of the carbon nanotubes allocated at the outer side of the carbon nanotube bundle are larger than those of inner side of the carbon nanotube bundle (20), and diameters of the carbon nanotube bundle (20) decrease toward the other end of the carbon nanotube bundle (20).
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Mariko Suzuki
  • Publication number: 20120276573
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jules J. VanDersarl, Alexander M. Xu, Nicholas A. Melosh
  • Patent number: 8294008
    Abstract: Carbon nanotubes are formed on projections on a substrate. A metal, such as nickel is deposited on the substrate with optional platforms, and heated to form the projections. Carbon nanotubes are formed from the projections by heating in an ethylene, methane or CO atmosphere. A heat sensor is also formed proximate the carbon nanotubes. When exposed to IR radiation, the heat sensor detects changes in temperature representative of the IR radiation. In a gas sensor, a thermally isolated area, such as a pixel is formed on a substrate with an integrated heater. A pair of conductors each have a portion adjacent a portion of the other conductor with projections formed on the adjacent portions of the conductors. Multiple carbon nanotubes are formed between the conductors from one projection to another. IV characteristics of the nanotubes are measured between the conductors in the presence of a gas to be detected.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 23, 2012
    Assignee: Honeywell International Inc.
    Inventors: Barrett E. Cole, J. David Zook
  • Publication number: 20120237435
    Abstract: Carbon nanostructures are mass produced from graphite. In particularly preferred aspects, graphene is thermo-chemically derived from graphite and used in numerous compositions. In further preferred aspects, the graphene is re-shaped to form other nanostructures, including nanofractals, optionally branched open-ended SWNT, nanoloops, and nanoonions.
    Type: Application
    Filed: April 30, 2012
    Publication date: September 20, 2012
    Inventor: Viktor I. Petrik
  • Patent number: 8269302
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 18, 2012
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Patent number: 8236446
    Abstract: The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V2O5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: August 7, 2012
    Assignee: ADA Technologies, Inc.
    Inventor: Wen Lu
  • Publication number: 20120183770
    Abstract: The present invention relates to the exfoliation and dispersion of carbon nanotubes resulting in high aspect ratio, surface-modified carbon nanotubes that are readily dispersed in various media. A method is disclosed for their production in high yield. Further modifications by surface active or modifying agents are also disclosed. Application of the carbon nanotubes of this invention as composites with materials such as elastomers, thermosets and thermoplastics are also described.
    Type: Application
    Filed: June 20, 2011
    Publication date: July 19, 2012
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8216364
    Abstract: Direct resistive heating is used to grow nanotubes out of carbon and other materials. A growth-initiated array of nanotubes is provided using a CVD or ion implantation process. These processes use indirect heating to heat the catalysts to initiate growth. Once growth is initiated, an electrical source is connected between the substrate and a plate above the nanotubes to source electrical current through and resistively heat the nanotubes and their catalysts. A material source supplies the heated catalysts with carbon or another material to continue growth of the array of nanotubes. Once direct heating has commenced, the source of indirect heating can be removed or at least reduced. Because direct resistive heating is more efficient than indirect heating the total power consumption is reduced significantly.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 10, 2012
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Mead M. Jordan, William R. Owens
  • Publication number: 20120162154
    Abstract: A touch pen includes a body and a head fixed on one end of the body and electrically connected with the body. The head includes a supporter and a contact layer located on an outer surface of the supporter, the contact layer includes a carbon nanotube structure.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8207013
    Abstract: A simplified method for fabricating a solar cell device is provided. The solar cell device has silicon nanowires (SiNW) grown on an upgraded metallurgical grade (UMG) silicon (Si) substrate. Processes of textured surface process and anti-reflection thin film process can be left out for further saving costs on equipment and manufacture investment. Thus, a low-cost Si-based solar cell device can be easily fabricated for wide application.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: June 26, 2012
    Assignee: Atomic Energy Council Institute of Nuclear Energy Research
    Inventor: Tsun-Neng Yang
  • Publication number: 20120058053
    Abstract: A contrast agent characterized in that each of carbon nanohorns forming a carbon nanohorn aggregate has an opening at the side wall or tip, wherein a metal M (at least one metal selected from among paramagnetic metals, ferromagnetic metals, and superparamagnetic metals) or a compound of the metal M is incorporated in or dispersed on each of the carbon nanohorns. A contrast agent characterized in that it contains a Gd oxide. There is provided a contrast agent, which can be mass-produced easily, and satisfies the requirement of low toxicity and enables microscopic diagnoses when used for MRI. A contrast agent characterized in that is contains a carbon nanohorn aggregate.
    Type: Application
    Filed: November 14, 2011
    Publication date: March 8, 2012
    Inventors: Sumio Iijima, Jin Miyawaki, Masako Yudasaka, Eiichi Nakamura, Hiroyuki Isobe, Hideki Yorimitsu, Hideto Imai
  • Publication number: 20120041153
    Abstract: The present invention is generally directed toward a regiofunctional carbon nanotube beam structures and a method the same. The regiofunctional carbon nanotube beam structures contain chemical moieties attached selectively to the ends and/or the sidewalls of the nanotube which differentiate the physico-chemical properties of the nanotube ends from the physico-chemical of the sidewalls to enable directed self-assembly. The method comprises the steps including opening carbon nanotube ends, protecting those ends from sidewall functionalization chemistry by chemically differentiating the open carbon nanotube ends from the nanotube sidewall, functionalizing the sidewalls, functionalizing the ends of the carbon nanotube and attaching crown to ends.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Inventor: Nolan Walker Nicholas
  • Patent number: 8110170
    Abstract: Provided are a conductive polymer-carbon nanotube composite including a carbon nanotube and a conductive polymer filled therein, and a method of manufacturing the same. The conductive polymer-carbon nanotube composite where a conductive polymer is filled in a carbon nanotube is manufactured by introducing a monomer of the conductive polymer into the carbon nanotube using a supercritical fluid technique and polymerizing the monomer. The conductive polymer-carbon nanotube composite is a novel nano-structure material which can overcome limitations that conventional materials may have, and thus can be applied to various applications such as sensors, electrode materials, nanoelectronic materials, etc.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 7, 2012
    Assignee: SNU R&DB Foundation
    Inventors: Yung-Woo Park, Johannes Steinmetz
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Patent number: 8083905
    Abstract: The internal and external walls of the carbon nanotubes are doped with nano-sized metallic catalyst particles uniformly to a degree of 0.3-5 mg /cm2. The carbon nanotubes are grown over a carbon substrate using chemical vapor deposition or plasma enhanced chemical vapor deposition. Since the carbon nanotubes have a large specific surface area, and metallic catalyst particles are uniformly distributed over the internal and external walls thereof, the reaction efficiency in an electrode becomes maximal when the carbon nanotubes are used for the electrode of a fuel cell. The carbon nanotubes fabricated using the method can be applied to form a large electrode. The carbon nanotubes grown over the carbon substrate can be readily applied to an electrode of a fuel cell, providing economical advantages and simplifying the overall electrode manufacturing process. A fuel cell using as the carbon nanotubes for its electrode provides improved performance.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: December 27, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Won-bong Choi, Jae-uk Chu, Chan-ho Pak, Hyuk Chang
  • Patent number: 8066967
    Abstract: A system and method for the manipulation of nanofibers using electrostatic forces. The nanofibers may be provided in a liquid medium, and the nanofibers may be nano-scale (i.e. measured in nanometers). The process is sensitive to the charge properties of the nanofibers (charge could be inherent to material or the charge can be induced into the material through electrochemical means), and therefore may be used to sort or classify particles. The nanofibers may also be aligned according to electrical fields, and thus anisotropic effect exploited. Devices produced may be conductors, semiconductors, active electronic devices, electron emitters, and the like. The nanofibers may be modified after deposition, for example to remove charge-influencing coatings to further enhance their performance, to enhance their adhesion to polymers for use as composite materials or result in the adhesion of the material at the proper location on a variety of different surfaces.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Electrox Corporation
    Inventors: Dietmar C Eberlein, Robert H Detig
  • Patent number: 8052855
    Abstract: A carbon nanotube (“CNT”) gas sensor includes a substrate, an insulating layer formed on the substrate, electrodes formed on the insulating layer, and CNT barriers that protrude higher than the electrodes in spaces between the electrodes to form gas detecting spaces. A method of manufacturing the gas sensor includes forming an insulating layer on a substrate, forming an electrode pattern on the insulating layer, coating CNT paste having a thickness greater than a thickness of electrodes in the electrode pattern on the electrodes and the insulating layer, and patterning and firing the carbon nanotube paste, including using a photolithography method, to retain only portions of the CNT paste coated on spaces between the electrodes.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-im Han, Soo-hyung Choi, Jeong-hee Lee, Soo-suk Lee, Jeong-na Heo
  • Publication number: 20110214709
    Abstract: Nanostructures and photovoltaic structures are disclosed. Methods for creating nanostructures are also presented.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Applicant: Q1 Nanosystems Corporation
    Inventors: Vincent Evelsizer, Larry Bawden, John Fisher
  • Patent number: 7998788
    Abstract: Techniques for combining nanotechnology with photovoltaics are provided. In one aspect, a method of forming a photovoltaic device is provided comprising the following steps. A plurality of nanowires are formed on a substrate, wherein the plurality of nanowires attached to the substrate comprises a nanowire forest. In the presence of a first doping agent and a first volatile precursor, a first doped semiconductor layer is conformally deposited over the nanowire forest. In the presence of a second doping agent and a second volatile precursor, a second doped semiconductor layer is conformally deposited over the first doped layer. The first doping agent comprises one of an n-type doping agent and a p-type doping agent and the second doping agent comprises a different one of the n-type doping agent and the p-type doping agent from the first doping agent. A transparent electrode layer is deposited over the second doped semiconductor layer.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Hendrik F. Hamann, Emanuel Tutuc
  • Patent number: 7947542
    Abstract: A method for making a thin film transistor, the method comprising the steps of: (a) providing a carbon nanotube array and an insulating substrate; (b) pulling out a carbon nanotube film from the carbon nanotube array by using a tool; (c) placing at least one carbon nanotube film on a surface of the insulating substrate, to form a carbon nanotube layer thereon; (d) forming a source electrode and a drain electrode; wherein the source electrode and the drain electrode being spaced therebetween, and electrically connected to the carbon nanotube layer; and (e) covering the carbon nanotube layer with an insulating layer, and a gate electrode being located on the insulating layer.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: May 24, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 7927748
    Abstract: A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 19, 2011
    Assignee: Uchicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Patent number: 7893513
    Abstract: According to some embodiments, the present invention provides a nanoelectronic device based on a nanostructure that may include a nanotube with first and second ends, a metallic nanoparticle attached to the first end, and an insulating nanoparticle attached to the second end. The nanoelectronic device may include additional nanostructures so a to form a plurality of nanostructures comprising the first nanostructure and the additional nanostructures. The plurality of nanostructures may arranged in a network comprising a plurality of edges and a plurality of vertices, wherein each edge comprises a nanotube and each vertex comprises at least one insulating nanoparticle and at least one metallic nanoparticle adjacent the insulating nanoparticle. The combination of at least one edge and at least one vertex comprises a diode. The device may be an optical rectenna.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: February 22, 2011
    Assignee: William Marsh Rice University
    Inventor: Howard K. Schmidt
  • Publication number: 20110020646
    Abstract: A method for producing a nanodiamond (n-diamond, p-diamond, i-carbon) in which a nanodiamond is removed from an activated carbon containing the nanodiamond. The activated carbon is prepared by carbonizing and/or activating a carbonaceous feedstock while restricting the presence of oxygen sufficiently to result in the formation of nanodiamonds embedded in carbon. The nanodiamonds can be separated and purified from the activated carbon, and can be concentrated by treatment of the activated carbon with an oxidizing agent. Also provided is a method for producing a nanodiamond, and particularly a nanodiamond fiber, by mixing a carbon source, a metal and an acid under conditions which result in nanodiamond formation. Nanodiamond fibers up to 2000 nanometers or more can be produced. The nanodiamond fibers can be woven or used to provide structural reinforcement for various materials.
    Type: Application
    Filed: January 22, 2009
    Publication date: January 27, 2011
    Inventors: Allen J. West, James Kennett
  • Publication number: 20100285390
    Abstract: A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
    Type: Application
    Filed: May 25, 2010
    Publication date: November 11, 2010
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Di-Jia LIU, Junbing YANG, Xiaoping WANG
  • Publication number: 20100258724
    Abstract: An electron microscope comprising an electron emitting cathode equipped with a carbon nanotube and an extraction unit to field-emit electrons. The carbon nanotube contains a sharp portion which is approximately conical shape at tip thereof closed at the electron-emitting cathode. A method of manufacturing carbon nanotube having a sharp angle part at the tip thereof, comprising a step of placing and heat-treating a tip-sharpened carbon nanotube still at a lower temperature than a phase transition temperature and a step of placing and heat-treating a tip-sharpened carbon nanotube still at a higher temperature than a phase transition temperature.
    Type: Application
    Filed: December 27, 2006
    Publication date: October 14, 2010
    Inventors: Mitsuo Hayashibara, Tadashi Fujieda, Kishio Hidaka
  • Patent number: 7777404
    Abstract: Means for achieving the purpose of the present invention includes an field emission type cathode composed of a single fibrous carbon substance and a conductive substrate supporting the same; an extraction apparatus for causing field emission of electrons; and an accelerator for accelerating electrons, wherein the aforementioned field emission type electron gun is further contains means for heating the aforementioned field emission cathode, and means for applying the voltage of the polarity that does not allow the aforementioned field emission type cathode to field-emit electrons. Thereby, the amorphous carbon is removed from the tip end of the fibrous carbon substance of the field emission type electron gun, without the tip end thereof being damaged.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: August 17, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Patent number: 7767616
    Abstract: A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: August 3, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Publication number: 20100167918
    Abstract: A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein.
    Type: Application
    Filed: March 3, 2006
    Publication date: July 1, 2010
    Applicant: The University of Chicago
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Publication number: 20100154871
    Abstract: A substrate for counter electrode of dye-sensitized solar cell is made of a composite material, which is prepared by: a) compounding vinyl ester and graphite powder to form bulk molding compound (BMC) material, the graphite powder content ranging from 60 wt % to 95 wt % based on the total weight of the graphite powder and vinyl ester, wherein 0.01-10 wt % of an electrically conductive filler, based on the weight of the vinyl ester resin, is optionally added during the compounding; b) molding the BMC material from step a) to form a substrate for the counter electrode having a desired shaped at 80-200° C. and 500-4000 psi.
    Type: Application
    Filed: October 14, 2009
    Publication date: June 24, 2010
    Applicant: National Tsing Hua University
    Inventors: Chen-Chi Martin Ma, Chuan-Yu Yen, Shu-Hang Liao, Ming-Yu Yen, Min-Chien Hsiao
  • Patent number: 7736724
    Abstract: A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: June 15, 2010
    Assignee: The University of Tulsa
    Inventors: Paige Lea Johnson, Dale Teeters
  • Patent number: 7718995
    Abstract: A nanowire according to the present invention includes: a nanowire body made of a crystalline semiconductor as a first material; and a plurality of fine particles, which are made of a second material, including a constituent element of the semiconductor, and which are located on at least portions of the surface of the nanowire body. The surface of the nanowire body is smooth.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Kenji Harada
  • Publication number: 20100117138
    Abstract: A memory cell (300, 500), the memory cell (300, 500) comprising a substrate (301), a nanowire (302) extending along a vertical trench formed in the substrate (301), a control gate (303) surrounding the nanowire (302), and a charge storage structure (320, 501) formed between the control gate (303) and the nanowire (302).
    Type: Application
    Filed: April 17, 2008
    Publication date: May 13, 2010
    Applicant: NXP, B.V.
    Inventors: Almudena Huerta, Michiel Jos Van Duuren, Nader Akil, Dusan Golubovic, Mohamed Boutchich
  • Publication number: 20100044225
    Abstract: A nano-structure is provided. In some embodiments, the nano-structure includes a carbon nanotube with a carbon nanotube body. The carbon nanotube body has at least one cap at one end of the nanotube body. Also provided are methods of making the nano-structures described herein.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Inventors: Yong Hyup Kim, Tae June Kang
  • Publication number: 20100044074
    Abstract: Structures comprising a carbon nanotube (CNT) network and metal, as well as methods for making a CNT network structure, are provided.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Inventors: Yong Hyup Kim, Tae June Kang