Nanostructure Patents (Class 977/700)

  • Patent number: 11862616
    Abstract: A light emitting device includes a short wavelength light emitting portion, a long wavelength light emitting portion, and a coupling layer combining the short wavelength emitting portion and the long wavelength light emitting portion. Each of the short wavelength light emitting portion and the long wavelength light emitting portion includes a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. The active layer of the long wavelength light emitting portion contains more Indium (In) than the active layer of the short wavelength light emitting portion, and the short wavelength light emitting portion emits light of a shorter wavelength than that of light emitted from the long wavelength light emitting portion.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: January 2, 2024
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Chung Hoon Lee, Dae Sung Cho, So Ra Lee
  • Patent number: 11854878
    Abstract: A method of forming a semiconductor device includes forming an opening in a dielectric layer, and forming a barrier layer in the opening. A combined liner layer is formed over the barrier layer by first forming a first liner layer over the barrier layer, and forming a second liner layer over the first liner layer, such that the first liner layer and the second liner layer intermix. A conductive material layer is formed over the combined liner layer, and a thermal process is performed to reflow the conductive material layer.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Huei-Wen Hsieh, Kai-Shiang Kuo, Cheng-Hui Weng, Chun-Sheng Chen, Wen-Hsuan Chen
  • Patent number: 11819571
    Abstract: The invention relates to the treatment of cancer. In one embodiment, the present invention provides a composition comprising a micelle construct attached to a curcumin molecule or a pharmaceutical equivalent, analog, derivative, or salt thereof, and a chemotherapy agent. In another embodiment, the present invention provides a method of treating cancer by administering a therapeutically effective amount of a composition comprising a micelle construct attached to curcumin or a pharmaceutical equivalent, analog, derivative, or salt thereof, and a chemotherapy agent.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: November 21, 2023
    Assignee: IMMIX BIOPHARMA, INC.
    Inventor: Ilya Rachman
  • Patent number: 11563226
    Abstract: A membrane-electrode assembly including a polymer electrolyte membrane, and electrocatalyst layers disposed on both surfaces of the polymer electrolyte membrane, with a total light transmittance measured after delamination of both the electrocatalyst layers by using an adhesive member is 40% or less. The total light transmittance is at an electrocatalyst layer located part, when a total light transmittance at an electrocatalyst layer non-located part is taken to be 100%. The viscous member has an adhesive force of 3 N/10 mm or more when measured by pulling the viscous member adhered to a stainless steel in a 180°angle direction relative to the stainless steel, for delamination from the stainless steel.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: January 24, 2023
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventor: Katsuyuki Kishi
  • Patent number: 11512189
    Abstract: The present invention is directed to a polyethylene-polypropylene composition comprising a blend (A) being a recycled material, said blend comprising polypropylene and polyethylene, and a compatibilizer (B) being a copolymer of 1-butene and ethylene. Further, the present invention is directed to an article comprising said polyethylene-polypropylene composition and a process for preparing said polyethylene-polypropylene composition. The present invention is also directed to the use of a compatibilizer (B) being a copolymer of 1-butene and ethylene for improving the impact-stiffness balance and the morphology of the blend (A).
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 29, 2022
    Assignee: BOREALIS AG
    Inventors: Susanne Kahlen, Hermann Braun, Yi Liu, Markus Gahleitner, Gerhard Hubner
  • Patent number: 9023449
    Abstract: Composite reinforcement “Astrofleks” is used in building structures for reinforcement of insulation wall panels, solid concrete and prefabricated buildings. The composite reinforcement comprises the outer layer (1), inside of which the inner layer (2) is placed, on the outer surface of outer layer (1) there are relief elements (3) to improve adhesion of nanocomposite reinforcement with concrete. According to embodiment number 1, layer (1) is made of nanocomposite carbon in which the polymer matrix is modified by carbon nanostructures. Layer (2) is made of lightweight highly mobile concrete, containing in its composition components in the following ratio (% wt.): Cement—20-50; filler—70-30; plasticizer—0.02-2.5; water—the rest. According to embodiment number 2, layer (1) is made of nanocomposite carbon in which the polymer matrix is modified by polyhedral multi-layered carbon nanostructures of fulleroid type at a ratio of 0.01-10% by weight of the polymer matrix.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: May 5, 2015
    Assignee: Virtum i Sverige AB
    Inventors: Andrey Nikolaevich Ponomarev, Aleksandr Pavlovich Beloglazov
  • Patent number: 9018649
    Abstract: A nanopatterned surface is prepared by forming a block copolymer film on a miscut crystalline substrate, annealing the block copolymer film, then reconstructing the surface of the annealed block copolymer film The method creates a well-ordered array of voids in the block copolymer film that is maintained over a large area. The nanopatterned block copolymer films can be used in a variety of different applications, including the fabrication of high density data storage media.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: April 28, 2015
    Inventors: Thomas P. Russell, Soojin Park, Ting Xu
  • Patent number: 9012567
    Abstract: Supramolecular polymers having repeat units connected by hydrogen bonds, where the repeat units are monomers, macromers, oligomers or polymers where at least one on the monomers contains at least one 2,5-diketopiperazine group are described. Composition prepared from these supramolecular polymers and articles produced from these compositions are also described.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 21, 2015
    Assignee: Rhodia Operations
    Inventors: Thierry Badel, Stéphane Jeol, Franck Touraud
  • Patent number: 9005995
    Abstract: The present invention relates to a nanoscale or microscale particle for encapsulation and delivery of materials or substances, including, but not limited to, cells, drugs, tissue, gels and polymers contained within the particle, with subsequent release of the therapeutic materials in situ, methods of fabricating the particle by folding a 2D precursor into the 3D particle, and the use of the particle in in-vivo or in-vitro applications. The particle can be in any polyhedral shape and its surfaces can have either no perforations or nano/microscale perforations. The particle is coated with a biocompatible metal, e g gold, or polymer e g parvlene, layer and the surfaces and hinges of the particle are made of any metal or polymer combinations.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Assignee: The Johns Hopkins University
    Inventors: David H. Gracias, Timothy Gar-Ming Leong, Hongke Ye
  • Patent number: 8986999
    Abstract: Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: March 24, 2015
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard University
    Inventors: Yoon Sung Nam, Angela Belcher, Andrew Parsons Magyar, Daeyeon Lee, Jin-Woong Kim, David Weitz
  • Patent number: 8987334
    Abstract: The invention relates to the use of calixarenes for preventing or limiting the transfer of an actinide in the body from a site of skin contamination.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 24, 2015
    Assignee: Institut de Radioprotection et de Surete Nucleaire
    Inventors: Aurélie Spagnul, François Rebiere, Guillaume Phan, Céline Bouvier-Capely, Elias Fattal
  • Patent number: 8968545
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Lux Bio Group, Inc.
    Inventor: Gordon Holt
  • Patent number: 8961799
    Abstract: A method of forming a nano-structured substrate is provided, the method comprising including forming non-integral nano-pillars on a substrate surface and directionally etching the substrate surface using the non-integral nano-pillars as a mask to form integral nano-structures in the substrate.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: February 24, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Peter Mardilovich, Anthony M. Fuller, Qingqiao Wei
  • Patent number: 8951444
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 10, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Patent number: 8945404
    Abstract: A mechanism is provided for fabricating nanochannels for a nanodevice. Insulating film is deposited on a substrate. A nanowire is patterned on the film. Insulating material is deposited on the nanowire and film. A first circular hole is formed in the insulating material as an inlet, over a first tip of the nanowire to expose the first tip. A second circular hole is formed as an outlet, over a second tip of the nanowire opposite the first tip to expose the second tip. A nanochannel connects the first and second holes by etching away the nanowire via an etchant in the first and the second holes. A first reservoir is attached over the first hole in connection with the nanochannel at a previous location of the first tip. A second reservoir is attached over the second hole in connection with the nanochannel at a previous location of the second tip.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 8937030
    Abstract: The present invention is directed to perovskite nanostructures of Formula ABO3, wherein A and B represent one or more metals with A having a valence lower than B, to methods of making the perovskite nanostructures of Formula ABO3 comprising their synthesis within and precipitation from reverse micelles, and the use of the perovskite nanostructures of Formula ABO3 as capacitors, and their use in dynamic random access memory, electromechanics, and non-linear optics.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: January 20, 2015
    Assignee: Research Foundation of the City University of New York
    Inventors: Kai Su, Nan-Loh Yang
  • Patent number: 8933419
    Abstract: An optical fiber phosphor screen including a thin film phosphor layer and an optical fiber faceplate, allowing interfering light in a cladding of the optical fibers to be reduced. The phosphor screen includes an angular filter including at least one layer arranged between the thin film phosphor layer and the optical fiber faceplate.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: January 13, 2015
    Assignee: PHOTONIS France
    Inventors: Gert Nuetzel, Pascal Lavoute, Christophe Fontaine
  • Patent number: 8927988
    Abstract: A method of forming a nanopore array includes patterning a front layer of a substrate to form front trenches, the substrate including a buried layer disposed between the front layer and a back layer; depositing a membrane layer over the patterned front layer and in the front trenches; patterning the back layer and the buried layer to form back trenches, the back trenches being aligned with the front trenches; forming a plurality of nanopores through the membrane layer; depositing a sacrificial material in the front trenches and the back trenches; depositing front and back insulating layers over the sacrificial material; and heating the sacrificial material to a decomposition temperature of the sacrificial material to remove the sacrificial material and form pairs of front and back channels, wherein the front channel of each channel pair is connected to the back channel of its respective channel pair by an individual nanopore.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Hongbo Peng
  • Patent number: 8920766
    Abstract: Provided are methods for making quantum nanostructures based on use of a combination of nucleation and growth precursors. The methods can be used to provide quantum nanostructures of a selected size. Also provided are quantum nanostructures, compositions comprising the quantum nanostructures, and uses of the quantum nanostructures. The quantum nanostructures can be used, for example, in imaging applications.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 30, 2014
    Assignee: University of Rochester
    Inventors: Todd D. Krauss, Christopher M. Evans
  • Patent number: 8901031
    Abstract: Novel brominated poly(2,6-diphenyl-1,4-phenylene oxide) compounds are synthesized and found to have improved carbon dioxide separation properties, including improved carbon dioxide permeability and improved carbon dioxide/nitrogen selectivity.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: December 2, 2014
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen
  • Patent number: 8900517
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 2, 2014
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
  • Patent number: 8900703
    Abstract: An electronic device is described. The electronic device includes a circuit chip. The electronic device also includes a coating covering at least a portion of the circuit chip. The coating further includes a nanomaterial, to protect the circuit chip from at least one of identifying the chip structure, reading memory locations, or modifying memory locations.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: December 2, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: John Thommana, Lizy Paul, Jeffrey D. Meyer
  • Patent number: 8895319
    Abstract: The present invention provides a nanohybrid type nitrogen monoxide detecting sensor and a production method therefor in which the nanohybrid type nitrogen monoxide detecting sensor includes a fluorescent semiconducting quantum dot and a transition metal compound. Employing a nanohybrid structure including semiconducting quantum dot nano-particles combined with a molecule recognizer selectively forming a bonding to nitrogen monoxide, the nitrogen monoxide detecting sensor is enabled to detect an infinitesimal amount of nitrogen monoxide by bringing about photoluminescence upon detection of nitrogen monoxide.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 25, 2014
    Assignee: Korea Institute of Ceramic Engineering and Technology
    Inventors: Eunhae Koo, Sung-ho Yoon, Jong-chul Lee, Jong-hee Kim
  • Patent number: 8890323
    Abstract: A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Cornell Research Foundation
    Inventors: Samuel M. Stavis, Joshua B. Edel, Kevan T. Samiee, Harold G. Craighead
  • Patent number: 8859000
    Abstract: The present invention is directed to a process for synthesizing nanoparticles. This process involves providing a stable emulsion containing a plurality of droplets suspended in a continuous phase. The droplets, which are encapsulated by an interfacially-active material, contain a first reactant dissolved in a dispersed phase. The process also involves contacting a gas phase containing a second reactant diluted in a carrier gas with the stable emulsion under conditions effective to permit the first reactant and second reactant to react and form nanoparticles. The present invention further relates to nanoparticle-loaded emulsions and their uses in formulations for various purposes.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: October 14, 2014
    Assignee: The Research Foundation of State University of New York
    Inventors: Triantafillos J. Mountziaris, Paschalis Alexandridis
  • Patent number: 8853286
    Abstract: The present invention is directed to compositions useful for use in separators for use in lithium ion batteries, and membranes, separators, and devices derived therefrom.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: October 7, 2014
    Assignees: Drexel University, The Trustees Of The University Of Pennsylvania
    Inventors: Yossef A. Elabd, Karen I. Winey, Yuesheng Ye, Jae-Hong Choi, Tsen-Shan Sharon Sharick
  • Patent number: 8840863
    Abstract: A method for the synthesis of nano-products, such as atomic titanium oxide wires. The method allows wires of anatase titanium oxide wires to be formed in a range of tunable diameters and aspect ratios in the nanometer and subnanometer size scales. The method also allows the titanium wires to be capped by oleic acid to enhance dispersing and solubility. The method allows the titanium wires to be surface doped with nitrogen species to enhance stability and functionality such as enhanced absorption in the visible wavelength region, which is useful for photodegradation of organic wastes in water by sunlight.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 23, 2014
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Shihe Yang, Chenmin Liu
  • Patent number: 8834967
    Abstract: A method of reducing the diameter of pores formed in a graphene sheet includes forming at least one pore having a first diameter in the graphene sheet such that the at least one pore is surrounded by passivated edges of the graphene sheet. The method further includes chemically reacting the passivated edges with a chemical compound. The method further includes forming a molecular brush at the passivated edges in response to the chemical reaction to define a second diameter that is less than the initial diameter of the at least one pore.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ahmed A. Maarouf, Glenn J. Martyna
  • Patent number: 8834696
    Abstract: The present invention provides a device and methods of use thereof for desalting a solution. The methods, inter-alia, make use of a device comprising microchannels, which are linked to conduits, whereby induction of an electric field in the conduit results in the formation of a space charge layer within the microchannel. The space charge layer provides an energy barrier for salt ions and generates an ion depletion zone proximal to the linkage region between the microchannel and the conduit. The method thus enables the removal of salt ions from the region proximal to the conduit and their accumulation in a region distant from the conduit, within the microchannel.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 16, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Sung Jae Kim, Jongyoon Han
  • Patent number: 8834746
    Abstract: Nanostructured compositions containing carbon nanotubes and at least one other type of nanoparticle can display the beneficial properties of both substances. Nanostructured compositions can contain a plurality of carbon nanotubes, a plurality of nanoparticles, and a plurality of linker moieties, where at least a portion of the linker moieties connect at least a portion of the carbon nanotubes to the nanoparticles. The nanostructured compositions can form a substrate coating. The nanostructured compositions can contain two or more different types or sizes of nanoparticles. Methods for forming a nanostructured composition can include forming a non-covalent bond between a linker moiety and a carbon nanotube, forming a covalent bond between a linker moiety and a nanoparticle or a surfactant coating thereon, and applying a plurality of carbon nanotubes to a substrate. The linker moiety can be non-covalently bonded to the carbon nanotube before or after applying the carbon nanotubes to the substrate.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Timothy B. Stachowiak, Georgina B. Higginbotham, Ashley E. Pietz, Hilary S. Lackritz
  • Patent number: 8826529
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Patent number: 8822026
    Abstract: The present disclosure generally relates to conductive films and methods for forming conductive films. In some examples, a substrate may be provided having a dispersion of silica nanoparticles provided on a surface thereof. Carbon nanotubes may be adhered to the dispersion of silica nanoparticles on the surface of the substrate to provide the conductive film on the substrate.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: September 2, 2014
    Assignee: Emprie Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8802557
    Abstract: A method for forming a micro bump includes forming a first nano-particle layer on a substrate and forming a second nano-particle layer on the first nano-particle layer. The first and second nano-particle layers include a plurality of first nano particles and a plurality of second nano particles, respectively. The method further includes irradiating a laser beam onto the second nano-particle layer, where the laser beam penetrates through the second nano-particle layer and is at least partially absorbed by at least some of the first nano particles to generate heat. The first nano particles and the second nano particles have different absorption rates with respect to the laser beam.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 12, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ruoh-Huey Uang, Yi-Ting Cheng
  • Patent number: 8801894
    Abstract: Methods for fabricating sub-lithographic, nanoscale microchannels utilizing an aqueous emulsion of an amphiphilic agent and a water-soluble, hydrogel-forming polymer, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 8801662
    Abstract: A drug-delivering medical device for delivering a drug to a target site in a body lumen is disclosed. The drug-delivering medical device includes a balloon catheter and an inflatable balloon positioned on the balloon catheter. The inflatable balloon has a hydrophilic surface. One or more portions of the hydrophilic surface are coated with two or more nano-carriers. A nano-carrier of the two or more nano-carriers includes a drug surrounded by an encapsulating medium. As the drug is surrounded by the encapsulating medium, the surface of the nano-carrier is devoid of the drug. When the inflatable balloon is inflated upon coming in proximity to a target site in the body lumen, about 30% to 80% of the two or more nano-carriers are released from the hydrophilic surface within 15-90 seconds.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: August 12, 2014
    Assignee: Concept Medical, Inc
    Inventors: Manish Doshi, Divyesh Sherdiwala, Prakash Sojitra, Ashwin Vyas, Pankaj Gandhi
  • Patent number: 8790544
    Abstract: It is possible to obtain a polarizing film having a high dichroic ratio by using a liquid-crystalline coating solution in which a small quantity of a second lyotropic liquid-crystalline low-molecular compound is mixed with a first lyotropic liquid-crystalline low-molecular compound. The second lyotropic liquid-crystalline low-molecular compound has a mole number smaller than the first lyotropic liquid-crystalline low-molecular compound. The molecular size of the second lyotropic liquid-crystalline low-molecular compound is smaller than that of the first lyotropic liquid-crystalline low-molecular compound.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 29, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Shoichi Matsuda, Tadayuki Kameyama, Sadahiro Nakanishi, Toru Umemoto
  • Patent number: 8790551
    Abstract: An electrolyte composition containing an ionic liquid and conductive particles, an electrolyte composition containing an ionic liquid and oxide semiconductor particles and optionally containing conductive particles, and an electrolyte composition containing an ionic liquid and insulating particles are provided. Furthermore, a photoelectric conversion element comprising: a working electrode, the working electrode comprising an electrode substrate and an oxide semiconductor porous film formed on the electrode substrate and sensitized with a dye; a counter electrode disposed opposing the working electrode; and an electrolyte layer made of these electrolyte compositions is provided.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 29, 2014
    Assignee: Fujikura Ltd.
    Inventors: Hiroki Usui, Nobuo Tanabe, Hiroshi Matsui, Tetsuya Ezure, Shozo Yanagida
  • Patent number: 8741158
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 3, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Tolga Aytug, John T. Simpson, David K. Christen
  • Publication number: 20140147652
    Abstract: The present technology provides an illustrative method for preparing fibers with desirable optical characteristics. The method includes providing a fiber that comprises a core layer and a cladding layer located around the core layer. The method further includes applying a nanostructure template to the cladding layer to form one or more photonic nanostructures having nanostructure scales and compressing the core layer to cause the core layer to bulge and form air gaps between the core layer and the one or more photonic nanostructures.
    Type: Application
    Filed: October 17, 2011
    Publication date: May 29, 2014
    Inventors: Hemanshu D. Bhatt, Sunit D. Tyagi
  • Patent number: 8728429
    Abstract: In certain implementations, a method of manufacturing electrically conductive nanodiamond particles involves providing at least one type of carbon-containing explosive material and at least one type of non-explosive material; wherein the non-explosive material contains at least one or more than one element or species other than nitrogen that serve as a nanodiamond dopant; mixing the carbon containing explosive material with the non-explosive material; detonating the mixture under conditions of negative oxygen balance in the presence of a cooling medium; purifying the product of detonation from incombustible impurities; and carrying out additional processing for activation or enhancement of electrical conductance. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 20, 2014
    Assignee: International Technology Center
    Inventor: Olga Shenderova
  • Patent number: 8731133
    Abstract: A pressurized water nuclear reactor (PWNR) includes a core having a containment shield surrounding a reactor vessel having fuel assemblies that contain fuel rods filled with fuel pellets, and control rods, and a steam generator thermally coupled to the reactor vessel. A flow loop includes the steam generator, a turbine, and a condenser, and a pump for circulating a water-based heat transfer fluid in the loop. The heat transfer fluid includes a plurality of nanoparticles having at least one carbon allotrope or related carbon material dispersed therein, such as diamond nanoparticles.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: May 20, 2014
    Assignee: University of Florida Research Institute Foundation, Inc.
    Inventors: Ronald H. Baney, James S. Tulenko, Kevin W. Powers
  • Patent number: 8722009
    Abstract: A nanocrystalline supported or unsupported copper oxide with a residual carbon content of <10% and a BET surface area >95 m2/g. Further, a method for the production of a supported, or unsupported nanocrystalline copper oxide is disclosed, as well as the use thereof in catalysis, in particular in the steam reforming of methanol or in the hydrogenation of esters.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 13, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Hans-Joerg Woelk, Alfred Hagemeyer, Frank Grossmann, Oliver Wegner
  • Patent number: 8709829
    Abstract: The present invention relates to a nanoscale or microscale particle for encapsulation and delivery of materials or substances, including, but not limited to, cells, drugs, tissue, gels and polymers contained within the particle, with subsequent release of the therapeutic materials in situ, methods of fabricating the particle by folding a 2D precursor into the 3D particle, and the use of the particle in in-vivo or in-vitro applications The particle can be in any polyhedral shape and its surfaces can have either no perforations or nano/microscale perforations The particle is coated with a biocompatible metal, e g gold, or polymer e g parvlene, layer and the surfaces and hinges of the particle are made of any metal or polymer combinations.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: April 29, 2014
    Assignee: The Johns Hopkins University
    Inventors: David H. Gracias, Timothy Gar-Ming Leong, Hongke Ye
  • Patent number: 8709350
    Abstract: An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 29, 2014
    Assignee: The Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey
  • Patent number: 8703852
    Abstract: The present invention which is directed to a composition comprising: (a) a poly(arylene ether); (b1) a radial block copolymer of an alkenyl aromatic monomer and a conjugated diene; wherein the radial block copolymer has about 50 to about 70 weight percent of repeating units derived from the alkenyl aromatic monomer and a number average molecular weight of about 50,000 to about 70,000 atomic units; (b2) a linear block copolymer of an alkenyl aromatic monomer and a conjugated diene; wherein the linear block copolymer has about 55 to about 70 weight percent of repeating units derived from the alkenyl aromatic monomer; wherein the ratio of (b1) to (b2) is 0.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: April 22, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventor: Kim G. Balfour
  • Patent number: 8703073
    Abstract: A lithographically structured device has an actuation layer and a control layer operatively connected to the actuation layer. The actuation layer includes a stress layer and a neutral layer that is constructed of materials and with a structure such that it stores torsional energy upon being constructed. The control layer is constructed to maintain the actuation layer substantially in a first configuration in a local environmental condition and is responsive to a change in the local environmental condition such that it permits a release of stored torsional energy to cause a change in a structural configuration of the lithographically structured device to a second configuration, the control layer thereby providing a trigger mechanism. The lithographically structured device has a maximum dimension that is less than about 10 mm when it is in the second configuration.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 22, 2014
    Assignee: The Johns Hopkins University
    Inventors: David Hugo Gracias, Timothy Gar-Ming Leong
  • Patent number: 8697098
    Abstract: The invention encompasses micelle assemblies, compositions having micelle assemblies, and methods for preparing micelle assemblies and compositions thereof. The invention also encompasses a prolamine protein conjugated to a polymer, such as a polyethylene glycol (PEG) chain, which conjugates can be used to prepare micelle assemblies. The invention further encompasses methods of encapsulating molecules using the conjugates of the invention. The micelle assemblies can be used for a variety of applications, such as treating cancer, targeting tumors, reducing the toxicity of a drug in vivo, increasing the efficacy of an encapsulated agent in vivo, protecting an encapsulated agent against degradation, and enhancing the water solubility of a drug or other agent.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 15, 2014
    Assignee: South Dakota State University
    Inventors: Omathanu P. Perumal, Satheesh K. Podaralla, Ranjith Kumar Averineni
  • Publication number: 20140099445
    Abstract: A method is provided for producing easily a membrane (film) having a micro surface structure (porous structure, fibrous structure and the like) in nano-order. The method for producing a film having a nano-structure on the surface of the film, includes the steps of: (1) coating a substrate with a solution containing a copolymer including two or more homopolymer segments and an organic solvent having boiling point of 82° C. or more and a dielectric constant of 30 or less to form a membrane; (2) providing the membrane with a water vapor-containing gas having a relative humidity of 50% or more to age the membrane; and (3) drying the membrane to obtain the film.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicants: UNIVERSITY OF MASSACHUSETTS, SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Ryu TAKEKO, Thomas P. RUSSELL
  • Patent number: 8691180
    Abstract: A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: April 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Alex K. Zettl, Thomas D. Yuzvinsky, Adam M. Fennimore
  • Patent number: 8685323
    Abstract: Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: April 1, 2014
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Yoon Sung Nam, Angela Belcher, Andrew Magyar, Daeyeon Lee, Jin-Woong Kim, David Weitz