Within Specified Host Or Matrix Material (e.g., Nanocomposite Films, Etc.) Patents (Class 977/778)
  • Publication number: 20140001055
    Abstract: Various embodiments provide devices, methods, and systems for high throughput biomolecule detection using transducer arrays. In one embodiment, a transducer array made up of transducer elements may be used to detect byproducts from chemical reactions that involve redox genic tags. Each transducer element may include at least a reaction chamber and a fingerprinting region, configured to flow a fluid from the reaction chamber through the fingerprinting region. The reaction chamber can include a molecule attachment region and the fingerprinting region can include at least one set of electrodes separated by a nanogap for conducting redox cycling reactions. In embodiments, by flowing the chamber content obtained from a reaction of a latent redox tagged probe molecule, a catalyst, and a target molecule in the reaction chamber through the fingerprinting region, the redox cycling reactions can be detected to identify redox-tagged biomolecules.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Oguz H. Elibol, Grace M. Credo, Xing Su, Madoo Varma, Jonathan S. Daniels, Drew Hall, Handong Li, Noureddine Tayebi, Kai Wu
  • Patent number: 8614189
    Abstract: The present invention provides biocompatible composite materials that can be fabricated into a scaffold having properties suitable for bone repair and regeneration. These scaffolds have sufficient mechanical strength to be useful for the repair and regeneration of cortical bone.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 24, 2013
    Assignee: University of Connecticut
    Inventors: Cato T. Laurencin, Syam Prasad Nukavarapu, Sangamesh G. Kumbar
  • Patent number: 8613953
    Abstract: The invention provides a novel method for obtaining solid micro- or nanoparticles with a homogeneous structure. A method is provided for obtaining solid micro- or nanoparticles with a homogeneous structure having a particle size of less than 10 ?m where the processed solid compound has the natural, crystalline, amorphous, polymorphic and other features associated with the starting compound. In accordance with the invention a method which also makes it possible to obtain solid micro- or nanoparticles with a substantially spheroidal morphology is provided.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: December 24, 2013
    Assignees: Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina
    Inventors: Nora Ventosa Rull, Jaume Veciana Miró, Mary Cano Sarabia, Santiago Sala Vergés
  • Patent number: 8608983
    Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-hee Lee, Jeong-na Heo, Ho-suk Kang, Sang-kook Mah, In-taek Han
  • Publication number: 20130327643
    Abstract: Herein is described a process method and device used for nonporous, or porous media, that is metallic, ceramic, or of rock based compositions, such as geologic materials which may house inclusions such that under electromigration, thermophoresis, electrophoresis, magnetophoresis, electromagnetics, leads to combined advection, convection, electro-magnetic kinetics, osmosis, and diffusion. Meaning that under the influence of a solvent, cell, enclosure, contacts, and second enclosure material, yields the expulsion of trapped housed matter such as kerogen, oil, gas condensates, water-oil mixtures, hydrocarbons, terpenes, organic compounds, methane, inorganic material, solvent, or other organic material(s), or oil-gas-water type natural resource material. This is a simple environmental friendly method by which to expel housed and/or trapped media that is then released for collection, storage, and removal.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Inventors: Bertha Catalina Rostro, Mehdie Kohanloo
  • Patent number: 8598266
    Abstract: The present technology relates to compositions comprising a copolymer comprising a poly(C2-4 alkylene oxide) and a cationic polyacrylamide, and a plurality of nanoparticles of titanium dioxide, zinc oxide or a mixture thereof. The compositions may serve as flocculating agents to remove neutral and negatively charged nanoparticle pollutants from gasses, including air, and liquids such as water.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: December 3, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Yanjie Xu
  • Patent number: 8592225
    Abstract: A nanopore device capable of single molecule detection is described. The nanopores are formed in thin, rigid membranes and modified by a sputtered metal that forms an overhang during application. The overhang causes the pore to be narrower in a certain region, allowing passage of only a single molecule through the pore at a time, or binding to a biomolecule on the pore to be detected by a change in ionic current flow through the nanopore. Embodiments include a silicon nitride membrane formed on a silicon substrate and having a nanopore drilled with a focused ion beam system, followed by gold sputtering onto the membrane. Devices are formed with one or more nanopores and chambers having electrodes on either side of the nanopore.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mostafa Ronaghi, Amir Ali Haj Hossein Talasaz, Ronald W. Davis
  • Patent number: 8591759
    Abstract: The present disclosure relates to magnetic nanocomposite materials, and processes for the production thereof. In particular, the present disclosure relates to nanocomposites comprising magnetic nanoparticles surrounded by a polymer, which is bonded to a biodegradable polymer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 26, 2013
    Assignee: Chemgreen Innovation Inc.
    Inventors: Khashayar Ghandi, Paul Themens
  • Patent number: 8575591
    Abstract: An apparatus applies a carrier fluid to a semiconductor substrate. The carrier fluid carries nanoparticles. The positions of a plurality of particles in the carrier fluid are manipulated by applying an electric field, removing the carrier fluid from the substrate so as to leave the nanoparticles on the substrate, and sintering the nanoparticles to form a region.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: November 5, 2013
    Assignee: Nokia Corporation
    Inventors: Petri Juhani Korpi, Risto Johannes Johannes Rönkkä
  • Patent number: 8563081
    Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 22, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung
  • Patent number: 8563501
    Abstract: A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: October 22, 2013
    Assignee: Clean Technology International Corporation
    Inventors: Anthony S. Wagner, Mark DeSantis
  • Patent number: 8562938
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powders, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powders, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 22, 2013
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8563657
    Abstract: The present invention relates to (i) novel fluoroionic compounds capable of dispersing particulate filler compositions into a fluoropolymer; (ii) novel particulate compositions in which particulates are surface-functionalized with a fluoroionic compound; (iii) fluoropolymer composite materials containing the surface-functionalized particulates of (ii) incorporated into a fluoropolymer; (iv) crosslinked versions of (iii); v) methods for producing the crosslinked material of (iv); and (vi) articles of manufacture containing the compositions (iii) and (iv).
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: October 22, 2013
    Assignee: The Research Foundation of State University of New York
    Inventors: Benjamin S. Hsiao, Benjamin Chu, Jie Wei, Hongyang Ma, Feng Zuo
  • Patent number: 8557344
    Abstract: The present disclosure relates to a method for making a transparent carbon nanotube composite film. The method includes: (a) providing a transparent carbon nanotube film structure; (b) fixing the transparent carbon nanotube film structure on a supporting; (c) immersing the transparent carbon nanotube film structure with the supporting into a transparent polymer solution; and (d) removing the transparent carbon nanotube film structure with the supporting from the transparent polymer solution, thereby forming the transparent carbon nanotube composite film. A light transmittance of the transparent carbon nanotube composite film structure is higher than a light transmittance of the transparent carbon nanotube film structure.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: October 15, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Ying-Hui Sun, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20130266803
    Abstract: The present teachings disclose a fuser member comprising a substrate, a functional layer disposed on the substrate and an outer layer disposed on the functional layer. The outer layer comprises a cross-linked perfluorinated polyether.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: XEROX CORPORATION
    Inventors: Brynn M. Dooley, Yu Qi, Carolyn P. Moorlag, Qi Zhang, Nan-Xing Hu
  • Publication number: 20130263853
    Abstract: The present invention relates to a split-type controlling device for producing oxygen and delivering air and includes an outdoor unit, a plurality of indoor units, and a control panel. The control panel includes a controlling unit, which is utilized to control the outdoor unit and the indoor units. Carrying oxygen produced by the outdoor unit to an indoor space through an oxygen outlet preferably enhances air quality indoors.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventor: Fu-Lai HAN
  • Patent number: 8552110
    Abstract: Polymerization process for preparing mono-disperse organic/inorganic nanocomposite microspheres in the field of nano technology is disclosed. The process comprises preparing of two different miniemulsion systems of A with inorganic nanoparticles and B with polymeric monomers in advance; adding water-soluble initiator into miniemulsion A, stirring till complete dissolution finally, heating the mixed system to a given temperature for isothermal reaction. The grain size of the as-prepared superparamagnetic Fe3O4/polystyrene using to present invention is homogeneous and controllable, and the magnetic particles content is controllable.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: October 8, 2013
    Assignee: Shanghai Allrun Nano Science and Technology Co., Ltd.
    Inventors: Longlan Cui, Hong Xu, Hongchen Gu
  • Patent number: 8518276
    Abstract: A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 27, 2013
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet, Thomas R. Gaborski, James L. McGrath
  • Publication number: 20130213878
    Abstract: Disclosed is a filter cartridge. The filter cartridge includes an inner filter in the form of an approximately cylindrical corrugated membrane, an outer filter in the form of an approximately cylindrical corrugated membrane, the outer filter having a diameter greater than that of the inner filter and being installed around the inner filter, and at least one holder to support the inner filter and the outer filter.
    Type: Application
    Filed: September 7, 2011
    Publication date: August 22, 2013
    Applicant: COWAY CO., LTD.
    Inventors: Doo-Won Han, Dae-Hwan Kim, Sang-Hyeon Kang
  • Patent number: 8512846
    Abstract: Methods for fabricating sublithographic, nanoscale microstructures in two-dimensional square and rectangular arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 8506922
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powders, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powders, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 13, 2013
    Assignee: C & Tech Co., Ltd.
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8501850
    Abstract: The invention provides compositions and methods for inducing and enhancing order and nanostructures in block copolymers and surfactants by certain nonpolymeric additives, such as nanoparticles having an inorganic core and organic functional groups capable of hydrogen bonding. Various compositions having lattice order and nanostructures have been made from a variety of copolymers or surfactants that are mixed with nonpolymeric additives. Particularly, a variety of nanoparticles with an inorganic core and organic functional groups have been discovered to be effective in introducing or enhancing the degree of orders and nanostructures in diverse block copolymers and surfactants.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 6, 2013
    Assignee: University of Massachusetts
    Inventors: James J. Watkins, Vikram K. Daga, Ying Lin
  • Patent number: 8491998
    Abstract: Provided is a composite nanometal paste, whose layer, when sintered in an inert gas under no load, gives a metal layer that is equal or superior in electrical conductivity and thermal conductivity to conventional lead-rich solders. The composite nanometal paste contains, as metal components, composite metal nanoparticles comprising metal cores with an average particle diameter of d (nm) and an organic coating layer formed around the circumference, and metal filler particles having an average particle diameter of D (nm), and satisfies the first relation d<D and the second relation d<100 (nm).
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: July 23, 2013
    Assignees: Applied Nanoparticle Laboratory Corporation, Shindengen Electric Manufacturing Co., Ltd.
    Inventors: Teruo Komatsu, Ryo Matsubayashi
  • Patent number: 8480928
    Abstract: The present invention relates to a composite luminophore comprising an inorganic matrix and an organic fluorescent dye, wherein the inorganic matrix is formed from an inorganic compound, and wherein the organic fluorescent dye has one or more functional groups by means of which the fluorescent dye is incorporated into the inorganic matrix, or is bound chemically thereto. The present invention further relates to a process for preparing such a composite luminophore and to the use thereof.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 9, 2013
    Assignee: Karlsruher Institut fur Technologie (KIT)
    Inventors: Claus Feldmann, Marcus Roming
  • Patent number: 8481616
    Abstract: A two step method for preparing a filler composition, the filler composition useful to prepare a nanocomposite polymer and an epoxy nanocomposite coating. First, disperse a water dispersible filler material in a liquid comprising water, but without any added intercalation agent, to form a dispersion. Second, replace at least a portion of the water of the liquid with an organic solvent so that the water concentration of the liquid is less than six percent by weight to form the filler composition, the average size of at least one dimension of the filler material being less than two hundred nanometers upon examination by transmission electron microscopy of a representative freeze dried sample of the dispersion of the first step. A nanocomposite polymer can be prepared by mixing the filler composition with one or more polymer, polymer component, monomer or prepolymer to produce a polymer containing the filler composition.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: July 9, 2013
    Assignees: Dow Global Technologies LLC, The Texas A & M University
    Inventors: Luyi Sun, Jae Woong Boo, Hung-jue Sue, Maurice J. Marks, Richard F. Fibiger, Michael S. Paquette
  • Publication number: 20130171406
    Abstract: A method is disclosed for producing a film containing oriented nanotubes or nanoparticles. The nanotubes typified by CNTs or nanoparticles are oriented utilizing an electric field, and influence of an electrode is suppressed, thereby allowing for production of a large-area film containing nanotubes or nanoparticles including reliably oriented nanotubes or nanoparticles, at a low cost. The method for producing the film containing nanotubes or nanoparticles which are oriented along the plane direction of the film includes: placing a film precursor containing nanotubes or nanoparticles on an interdigitated comb-like electrode through a support, in which the comb-like electrode is arranged on an insulating plate and configured with electrode wires having a circular cross-section; applying an AC voltage to the comb-like electrode in a state with the film precursor present on the comb-like electrode; and converting the film precursor into a film.
    Type: Application
    Filed: September 8, 2011
    Publication date: July 4, 2013
    Applicant: Kyushu University, National University Corporation
    Inventors: Junya Suehiro, Michihiko Nakano
  • Publication number: 20130161192
    Abstract: An apparatus and method for linearly translocating nucleic acid molecules through an aperture at a reduced rate.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeo-young SHIM, Dong-ho LEE, Tae-han JEON, Seong-ho CHO, Kun-sun EOM, Hee-jeong JEONG
  • Patent number: 8470946
    Abstract: Carbon nanotube (CNT) yarns and sheets having enhanced mechanical strength using infused and bonded nano-resins. A CNT yarn or sheet is surface-activated to produce open bonds in the CNT walls prior to resin infusion. The CNT yarn or sheet is infused with a low viscosity nano-resin that penetrates spaces between individual CNTs and is cured to cross-link and chemically bond to the CNT walls, either directly or through a functional molecule, to bond the individual CNTs or ropes to each other. The nano-resin can comprise dicyclopentadiene having an uncured viscosity near that of water. The cross-linking process involves ring-opening metathesis polymerization and catalysis of the nano-resin in combination with a functionalizing material such as norbornene, to enhance bonding between the carbon and nano-resin. The process increases load capability, tensile strength, and elastic modulus of the yarns and sheets, for use as a structural component in composite materials.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: June 25, 2013
    Assignee: The Regents of the University of California
    Inventor: Lawrence E. Carlson
  • Publication number: 20130149522
    Abstract: There is provided a fiber and method of making a fiber. The fiber has an inner-volume portion having a first outer diameter, a plurality of nanostructures, and one or more first polymers. The nanostructures act as an orientation template for orientation of the one or more first polymers in a direction parallel to a longitudinal axis of the fiber. The fiber has an outer-volume portion having a second outer diameter and one or more second polymers. The outer-volume portion is in contact with and completely encompasses the inner-volume portion. The inner-volume portion has at least one of a tensile modulus and a strength that are higher than at least one of a tensile modulus and a strength of the outer-volume portion.
    Type: Application
    Filed: December 10, 2011
    Publication date: June 13, 2013
    Applicant: The Boeing Company
    Inventor: Thomas Karl Tsotsis
  • Patent number: 8449959
    Abstract: Polymeric article reinforced with a reinforcing component. The reinforcing component includes a composition made from at least one polymer and graphene sheets.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: May 28, 2013
    Assignees: Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret A.S., Vorbeck Materials Corp.
    Inventors: Ilhan A. Aksay, Bora Buyukdincer, Nurcin Javaherian, John S. Lettow, Gustavo Pino, Kate Redmond, Ibrahim O. Yildirim
  • Publication number: 20130118973
    Abstract: Provided is a filter medium for a liquid filter, having a three-dimensional micropore structure of a multi-layered structure using a multilayer nanofiber web that is obtained by performing air-electrospinning, to thus be thin but have high efficiency and long life, a method of manufacturing the filter medium using the multilayer nanofiber web, and a liquid filter using the filter medium. The filter medium for a liquid filter, includes: a nanofiber web that is made by stacking nanofibers that are obtained by air-electrospinning a fibrous polymer material and that have micropores; and a supporter that is inserted and combined onto one surface or in an inner portion of the nanofiber web.
    Type: Application
    Filed: December 28, 2012
    Publication date: May 16, 2013
    Applicant: AMOGREENTECH CO., LTD.
    Inventor: Amogreentech Co., Ltd.
  • Patent number: 8436056
    Abstract: A method for preparing a nanocomposite ion exchange hydrogel includes graft polymerizing a monomer onto a carbohydrate to form a carbohydrate graft copolymer. Before, during, or after graft polymerizing, an adsorbent is modified with a cationic surfactant to form a surfactant modified adsorbent. Next, the surfactant modified adsorbent is dispersed and entrapped in the carbohydrate graft copolymer and crosslinked to form a crosslinked carbohydrate graft copolymer. The crosslinked carbohydrate graft copolymer is then isolated.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: May 7, 2013
    Inventor: Abolfazl Barati
  • Publication number: 20130108865
    Abstract: The present invention relates to a material comprising (i) nanotubes or nanowires aligned with each other in a vertical matrix and (ii) a matrix arranged between the nanotubes or the nanowires, at least one organic polymer being covalently grafted to at least two of said nanotubes or to at least two of said nanowires. The present invention also relates to a method for preparing such a material or to its uses.
    Type: Application
    Filed: July 4, 2011
    Publication date: May 2, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pascal Boulanger, Alexandre Brouzes, Guy Claude Denis Deniau, Martine Mayne-L'Hermite, Marion Mille, Mathieu Pinault
  • Publication number: 20130108826
    Abstract: In various embodiments, the present invention provides method of forming composites. Such methods generally comprise: (1) applying carbon nanotubes onto a system, wherein the system comprises at least one of an electric field or a magnetic field, and wherein the at least one electric field or magnetic field unidirectionally aligns the carbon nanotubes; and (2) applying a polymer onto the carbon nanotubes while the carbon nanotubes are unidirectionally aligned by the at least one electric field or magnetic field. The application of the polymer onto the carbon nanotubes forms composites that comprise unidirectionally aligned carbon nanotubes embedded in the polymer. In further embodiments, the present invention provides polymer composites formed by the methods of the present invention.
    Type: Application
    Filed: April 6, 2011
    Publication date: May 2, 2013
    Applicant: William Marsh Rice University
    Inventors: Divya Kannan Chakravarthi, Ahmad Salman, Enrique V. Barrera, Michael T. Searfass, Kyle Kissell
  • Patent number: 8426722
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In a particular implementation, a photovoltaic cell includes a granular semiconductor and oxide layer with nanometer-size absorber semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer is disposed between electron and hole conducting layers. In some implementations, multiple semiconductor and oxide layers can be deposited.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 23, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Patent number: 8426776
    Abstract: A defrost window includes a transparent substrate, a carbon nanotube film, a first electrode, a second electrode and a protective layer. The transparent substrate has a top surface. The carbon nanotube film is disposed on the top surface of the transparent substrate. The first electrode and the second electrode electrically connect to the carbon nanotube film and space from each other. The protective layer covers the carbon nanotube film.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 23, 2013
    Assignee: Beijing FUNATE Innovation Technology Co., Ltd.
    Inventors: Yu-Quan Wang, Liang Liu
  • Patent number: 8420729
    Abstract: It is disclosed a method for preparing a nano hybrid resin containing carbon nano materials as graphitizing agents with predetermined characteristics by formation of graphite phase in residual carbon.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 16, 2013
    Inventors: Mohamad Ali Sharif Sheikhaleslami, Farhad Golestanifard, Hossein Sarpoolaky
  • Patent number: 8420717
    Abstract: A method of making a water soluble carbon nanostructure includes treating a fluorinated carbon nanostructure material with a polyol in the presence of a base. A water soluble carbon nanostructure comprises a fluorinated carbon nanostructure covalently bound to a polyol. Exemplary uses of water soluble carbon nanostructures include use in polymer composites, biosensors and drug delivery vehicles.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: April 16, 2013
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Oleksandr Kuznetsov, Rui Lobo
  • Publication number: 20130079223
    Abstract: Provided is a method of preparing mesoporous carbon including iron oxide nanoparticles. The method of preparing mesoporous carbon including iron oxide nanoparticles according to the present invention includes (1) dispersing and saturating iron oxide nanoparticles on a surface of mesoporous carbon and (2) calcinating the mesoporous carbon. The mesoporous carbon including iron oxide nanoparticles prepared according to the present invention may exhibit very good adsorption of an organic material and may have advantages in economic factors and convenience due to a reduction in reaction time. Therefore, contaminant treatment efficiency may be maximized by applying the mesoporous carbon including iron oxide nanoparticles according to the present invention to an adsorbent for a water treatment.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 28, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yo-Han Kim, Hee-Chul Choi, Ho-Sik Park
  • Patent number: 8404162
    Abstract: Composite materials and methods for making composites are provided. The method includes providing a nano-particulate-depletable material that includes a plurality of nano-particulates on or within a depletable material; positioning the nano-particulate-depletable material on or within a structural material; and depleting the depletable material such that the nano-particulates are selectively placed on or within the structural material. Depletion may include infusion of a resin into the structural material. The depletable material may be a polymeric foam, and the nano-particulates may be carbon nanotubes.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 26, 2013
    Assignee: Florida State University Research Foundation
    Inventors: Okenwa O. I. Okoli, Myungsoo Kim
  • Patent number: 8395003
    Abstract: The object of this invention is a suspension of metal nanoparticles with a mean size of between 1 and 20 nanometers, in at least one non-aqueous ionic liquid, whereby said suspension also contains at least one nitrogen-containing ligand, in which said metal nanoparticles comprise at least one transition metal in the zero valence state that is selected from among rhodium, ruthenium, iridium, nickel, and platinum by themselves or in a mixture and in which said nitrogen-containing ligand is selected from the group that is formed by the linear compounds that comprise at least one nitrogen atom, whereby the non-aromatic cyclic compounds comprise at least one nitrogen atom, the non-condensed aromatic compounds comprise at least one nitrogen atom, the condensed aromatic compounds comprise at least one group of two aromatic cycles that are condensed two by two, and at least one nitrogen atom, whereby the condensed aromatic compounds comprise at least 3 aromatic cycles and 1 nitrogen atom, and whereby the condensed ar
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 12, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Bastien Leger, Alain Roucoux, Helene Olivier-Bourbigou
  • Patent number: 8394483
    Abstract: Methods for fabricating sublithographic, nanoscale microstructures in two-dimensional square and rectangular arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: March 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 8394393
    Abstract: A composite material containing polymeric nanofibers, themselves containing NO-donor molecules, imbibed with an elastomer matrix is permeable to both water and gas so that dissociation reactions in the presence of water releases NO gas in a sustained manner. The NO-donor nanofibers may be formed by synthesizing acceptable NO-donor molecules, blending such molecules in solution with PVP, PCL or PVAc, electrospinning the blend at relatively high voltage for form fiber mats, applying PDMS rubber to the fiber mat and crosslinking it. The resulting NO-releasing electrospun fiber composite may be used in medical devices such as catheters, stents, or vascular grafts, with the purpose of releasing nitric oxide within a controlled rate and for a sustained period of time, as well as other known medical applications for NO.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: March 12, 2013
    Assignee: Syracuse University
    Inventors: Patrick Mather, Ifeanyi Onyejewke, Kazuki Ishida
  • Patent number: 8389485
    Abstract: Methods and compositions for delivering agents (e.g., gene silencing agents) and molecules to cells using yeast cell wall particles are presented herein. Embodiments of the invention are particularly useful for the delivery of nucleic acids (e.g., siRNAs) to cells.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 5, 2013
    Assignee: University of Massachusetts
    Inventors: Michael P. Czech, Gary R. Ostroff, Myriam Aouadi
  • Patent number: 8389050
    Abstract: A method of coating an inner surface of a tubular workpiece includes immersing the tubular workpiece lengthwise into a liquid subphase, inserting a first end of a delivery tube into the tubular workpiece so as to bring a distal end surface of the delivery tube to within a predetermined distance from the liquid surface, dispensing a suspension of coating particles into the first delivery tube to form a monolayer of the coating particles on the liquid surface in an area of the liquid surface between the inner surface of the tubular workpiece and an outer surface of the first delivery tube, and withdrawing at least a portion of the tubular workpiece from the liquid subphase so as to form a coating of the coating particles on a portion of the inner surface of the workpiece.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: March 5, 2013
    Assignee: Corning Incorporated
    Inventors: Thomas LaVee Buck, Jia Liu, Natesan Venkataraman
  • Publication number: 20130048579
    Abstract: A filter system for filtering a fluid containing particles includes a porous substrate. The porous substrate is made of a porous ceramic material. A filtering material is connected to the porous ceramic substrate. The filtering material includes nanofibers. The fluid travels through the porous ceramic substrate and travels through the filtering material wherein the particles are captured in the porous ceramic substrate and in the filtering material.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Jeffery J. Haslam, Mark A. Mitchell
  • Patent number: 8383716
    Abstract: Polyester nanocomposite compositions contain silica nanoparticles that have been subjected to surface treatment with novel trialkoxysilane compositions. The novel silane compositions are prepared by reacting a 3-isocyanatopropyl trialkoxysilane with 1,3-propanediol or certain polyether diols. The silica nanoparticles exhibit improved dispersion in the polyester. This leads to haze reduction and improvements in mechanical properties.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 26, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Changzai Chi, Gordon Mark Cohen, Surbhi Mahajan, Anilkumar Raghavanpillai
  • Patent number: 8373060
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In particular implementations, the novel photovoltaic structures can be fabricated using low cost and scalable processes, such as magnetron sputtering. In a particular implementation, a photovoltaic cell includes a photoactive conversion layer comprising one or more granular semiconductor and oxide layers with nanometer-size semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer can be a disposed between electrode layers. In some implementations, multiple semiconductor and oxide layers can be deposited. These so-called semiconductor and oxide layers absorb sun light and convert solar irradiance into electrical free energy.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 12, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Patent number: 8367769
    Abstract: Embodiments of the invention provide silicon-based nanoparticle composites, where the silicon nanoparticles are highly luminescent. Preferred embodiments of the invention are Si—O solid composite networks, e.g., glass, having a homogenous distribution of luminescent hydrogen terminated silicon nanoparticles in a homogenous distribution throughout the solid. Embodiments of the invention also provide fabrication processes for silicon-based silicon nanoparticle composites. A preferred method for forming a silicon-based nanoparticle composite disperses hydrogen terminated silicon nanoparticles and an inorganic precursor of an organosilicon gel in an aprotic solvent to form a sol. A catalyst is mixed into the sol. The sol is then permitted to dry into a gel of the silicon-based nanoparticle composite.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: February 5, 2013
    Assignee: NanoSi Advanced Technologies, Inc.
    Inventors: Abdullah Saleh Aldwayyan, Mohamad Saleh AlSalhi, Abdurahman Mohammed Aldukhail, Mansour S. Alhoshan, Muhammad Naziruddin Khan, Ghassan K. Al-Chaar, Munir Nayfeh
  • Patent number: 8367203
    Abstract: The present invention relates to a cellulosic molded body containing a cellulose/clay nanocomposite, wherein the clay component of said nanocomposite comprises a material selected from the group consisting of unmodified hectorite clays and hydrophilically modified hectorite clays.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 5, 2013
    Assignee: Lenzing Aktiengesellschaft
    Inventors: Harmut Rüf, Heinrich Firgo, Gert Kroner