Perovskites And Superconducting Composition (e.g., Baxsr1-xtio3, Etc.) Patents (Class 977/812)
  • Patent number: 8877085
    Abstract: A piezoelectric and/or pyroelectric composite solid hybrid material, includes: a solid dielectric matrix, a filler of at least one inorganic piezoelectric and/or pyroelectric material, wherein the filler includes filiform nanoparticles distributed throughout the volume of the solid dielectric matrix with an amount by volume of less than 50%, and in that the main directions of elongation of the filiform nanoparticles of the inorganic filler distributed in the dielectric matrix have a substantially isotropic distribution in the solid dielectric matrix.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 4, 2014
    Assignee: Universite Paul Sabatier Toulouse III
    Inventors: Jean-Fabien Capsal, Charlotte David, Eric Dantras, Colette Lacabanne
  • Patent number: 8721913
    Abstract: A lead-based particulate piezoelectric material has a median diameter of less than 1 ?m and a particle size distribution expressed by [arithmetic deviation/mean] of no greater than 15% and in which no less than 85% of all particles are cubic.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: May 13, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Takaaki Koizumi
  • Publication number: 20120251923
    Abstract: A material for a solid oxide fuel cell including a compound of Chemical Formula 1: BaaSrbCoxFeyM1-x?yO3-???Chemical Formula 1 wherein M represents at least one of a transition metal element or a lanthanide element, a and the b are in a range of 0.4?a?0.6 and 0.4?b?0.6, respectively, x and y are in a range of 0.6?x?0.9 and 0.1?y?0.4, respectively, and ? is selected so that the compound of Chemical Formula 1 is electrically neutral.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soo-yeon SEO, Chan KWAK, Hee-jung PARK
  • Publication number: 20120225292
    Abstract: There are provided a method of manufacturing a ceramic powder having a perovskite structure and a ceramic powder having a perovskite structure manufactured by the same. The method includes: mixing a compound of an element corresponding to site A in an ABO3 perovskite structure as well as a compound of an element corresponding to site B in the same structure, with supercritical water in a continuous mode to form seed crystals; and mixing the seed crystals in a batch mode to conduct grain growth thereof.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Inventors: Chang Hak Choi, Kum Jin Park, Kang Heon Hur, Hye Young Baeg, Jung Hwan Kim, Hyung Joon Jeon, Sang Hoon Kwon
  • Publication number: 20120115731
    Abstract: A method for preparing yttrium barium copper oxide (“YBCO”; “Y-123”; YBa2Cu3O7-x) superconducting nanoparticles is disclosed. The YBCO superconducting nanoparticles are prepared via a solid-state reaction by a solid-state reaction of an yttrium precursor, a barium precursor, and a copper precursor. One or more of the precursors are metal chelate compounds having acetylacetone ligands, which are highly stable and have a high compatibility with the other precursors.
    Type: Application
    Filed: January 4, 2012
    Publication date: May 10, 2012
    Inventors: Masoud Salavati-Niasari, Sima Alikhanzadeh-Arani
  • Publication number: 20110227061
    Abstract: Provided is an environmental gas sensor including an insulating substrate, a metal electrode formed above the insulating substrate, and a sensing layer formed of a semiconductor oxide nanofiber-nanorod hybrid structure above the metal electrode. The environmental gas sensor can have excellent characteristics of ultra high sensitivity, high selectivity, high responsiveness and low power consumption by forming a semiconductor oxide nanorod having high sensitivity to a specific gas on a semiconductor oxide nanofiber.
    Type: Application
    Filed: November 17, 2010
    Publication date: September 22, 2011
    Applicants: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, INSTITUTE FOR RESEARCH AND INDUSTRY COOPERATION PUSAN NATIONAL UNIVERSITY
    Inventors: Su Jae Lee, Chae Ryong Cho
  • Publication number: 20110130267
    Abstract: The present invention is related to producing fine nano or submicron-scale precision ceramic powder by applying an innovative chemical reactor with powder collection to the glycine-nitrate combustion process (GNC-P). The unique feature lies in the utilization of a simple-operating process to massively produce nano or submicron-scale ceramic oxide powder with multiple metal components. The present invention not only provides very high powder collection efficiency and production yield as well as safety but also satisfies requirements of industrial safety and environmental safety, and lowers production cost.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Inventors: Chun-Hsiu Wang, Maw-Chwain Lee, Yang-Chuang Chang, Wei-Xin Kao, Tai-Nan Lin
  • Patent number: 7884450
    Abstract: A process for growth of boron-based nanostructures, such as nanotubes and nanowires, with a controlled diameter and with controlled chemical (such as composition, doping) as well as physical (such as electrical and superconducting) properties is described. The boron nanostructures are grown on a metal-substituted MCM-41 template with pores having a uniform pore diameter of less than approximately 4 nm, and can be doped with a Group Ia or Group IIa electron donor element during or after growth of the nanostructure. Preliminary data based on magnetic susceptibility measurements suggest that Mg-doped boron nanotubes have a superconducting transition temperature on the order of 100 K.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 8, 2011
    Assignee: Yale University
    Inventors: Lisa Pfefferle, Dragos Ciuparu
  • Patent number: 7708974
    Abstract: Nanoparticles comprising tungsten, methods of manufacturing nanoparticles comprising tungsten, and applications of nanoparticles comprising tungsten, such as electronics, optical devices, photonics, reagents for fine chemical synthesis, pigments, and catalysts are provided.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: May 4, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7625835
    Abstract: A composite photocatalyst includes a semiconducting core and a nanoscale particle disposed on a surface of the semiconducting core, wherein the nanoscale particle is an electron carrier, and wherein the photocatalyst is sensitive to visible light irradiation.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 1, 2009
    Assignees: GM Global Technology Operations, Inc., Pohang University of Science and Technology
    Inventors: Wei Li, Se H. Oh, Jae S. Lee, Jum S. Jang
  • Patent number: 7575735
    Abstract: The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 18, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Patent number: 7147834
    Abstract: A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus Wong, Yuanbing Mao