Patents Represented by Attorney, Agent or Law Firm Alan H. Thompson
  • Patent number: 6634760
    Abstract: Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 Å and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: October 21, 2003
    Assignee: The Regents of the University of California
    Inventors: James A. Folta, Claude Montcalm, John S. Taylor, Eberhard A. Spiller
  • Patent number: 6633217
    Abstract: A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: October 14, 2003
    Assignee: The Regents of the University of California
    Inventor: Richard Freeman Post
  • Patent number: 6631032
    Abstract: A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 7, 2003
    Assignee: The Regents of the University of California
    Inventors: Dmitri D. Ryutov, Arthur Toor
  • Patent number: 6629503
    Abstract: A simple permanent-magnet-excited maglev geometry provides levitation forces and is stable against vertical displacements from equilibrium but is unstable against horizontal displacements. An Inductrack system is then used in conjunction with this system to effect stabilization against horizontal displacements and to provide centering forces to overcome centrifugal forces when the vehicle is traversing curved sections of a track or when any other transient horizontal force is present. In some proposed embodiments, the Inductrack track elements are also employed as the stator of a linear induction-motor drive and braking system.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 7, 2003
    Assignee: The Regents of the University of California
    Inventor: Richard Freeman Post
  • Patent number: 6627522
    Abstract: A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: September 30, 2003
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz De La Rubia
  • Patent number: 6628387
    Abstract: A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90° from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: September 30, 2003
    Assignee: The Regents of the University of California
    Inventors: Chris Darrow, Tino Seger
  • Patent number: 6628388
    Abstract: A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90° from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: September 30, 2003
    Assignee: The Regents of the University of California
    Inventors: Chris Darrow, Andrew Mirhej, Tino Seger
  • Patent number: 6621040
    Abstract: The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>1012 W/cm2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: September 16, 2003
    Assignee: The Regents of the University of California
    Inventors: Michael D. Perry, Brent C. Stuart
  • Patent number: 6620458
    Abstract: A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 16, 2003
    Assignee: The Regents of the University of California
    Inventors: John F. Poco, Lawrence W. Hrubesh
  • Patent number: 6620333
    Abstract: A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 16, 2003
    Assignee: The Regents of the University of California
    Inventors: Raymond M. Brusasco, Bernardino M. Penetrante, James A. Butler, Walter Grundler, George K. Governo
  • Patent number: 6617228
    Abstract: A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: September 9, 2003
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Patent number: 6618132
    Abstract: This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: September 9, 2003
    Assignee: The Regents of the University of California
    Inventor: Charles S. Vann
  • Patent number: 6613809
    Abstract: Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: September 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Joe H. Satcher, Jr., Theodore F. Baumann
  • Patent number: 6607487
    Abstract: A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: August 19, 2003
    Assignee: The Regents of the University of California
    Inventors: John Chang, Waleed Haddad, Jan-Ulco Kluiwstra, Dennis Matthews, Kenneth Trauner
  • Patent number: 6602473
    Abstract: A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: August 5, 2003
    Assignee: The Regents of the University of California
    Inventor: M. Allen Northrup
  • Patent number: 6600766
    Abstract: A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: July 29, 2003
    Assignee: The Regents of the University of California
    Inventors: Earl R. Ault, Brian J. Comaskey, Thomas C. Kuklo
  • Patent number: 6597820
    Abstract: The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: July 22, 2003
    Assignee: The Regents of the University of California
    Inventor: Sang K. Sheem
  • Patent number: 6592979
    Abstract: Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: July 15, 2003
    Assignee: The Regents of the University of California
    Inventors: Steven J. Deteresa, Richard E. Lyon, Scott E. Groves
  • Patent number: 6590209
    Abstract: A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: July 8, 2003
    Assignee: The Regents of the University of California
    Inventor: Sasa Bajt
  • Patent number: 6586233
    Abstract: A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: July 1, 2003
    Assignee: The Regents of the University of California
    Inventors: William J. Benett, James B. Richards, Fred P. Milanovich