Patents Represented by Attorney, Agent or Law Firm Ann Marie Mewherter
  • Patent number: 8041106
    Abstract: Methods and systems for detecting defects on a reticle are provided. One method includes printing a single die reticle in first areas of a wafer using different values of a parameter of a lithography process and at least one second area using a nominal value of the parameter. The method also includes acquiring first images of the first areas and second image(s) of the at least one second area. In addition, the method includes separately comparing the first images acquired for different first areas to at least one of the second image(s). The method further includes detecting defects on the reticle based on first portions of the first images in which variations in the first images compared to the at least one second image are greater than second portions of the first images and the first portions that are common to two or more of the first images.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 18, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Patrick Tung-Sing Pak, Wee-Teck Chia, Aaron Geurdon Chin, Irfan Malik, Brian Duffy
  • Patent number: 8041103
    Abstract: Various methods and systems for determining a position of inspection data in design data space are provided. One computer-implemented method includes determining a centroid of an alignment target formed on a wafer using an image of the alignment target acquired by imaging the wafer. The method also includes aligning the centroid to a centroid of a geometrical shape describing the alignment target. In addition, the method includes assigning a design data space position of the centroid of the alignment target as a position of the centroid of the geometrical shape in the design data space. The method further includes determining a position of inspection data acquired for the wafer in the design data space based on the design data space position of the centroid of the alignment target.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: October 18, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Ashok Kulkarni, Brian Duffy, Kais Maayah, Gordon Rouse, Eugene Shifrin
  • Patent number: 8010222
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 30, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 8000905
    Abstract: Computer-implemented methods, carrier media, and systems for determining sizes of defects detected on a wafer are provided. One computer-implemented method includes separating the defects into groups based on output acquired for the defects by multiple channels of an inspection system used to detect the defects on the wafer. The method also includes separating the defects in one or more of the groups into subgroups based on the output acquired for the defects by one or more of the multiple channels. In addition, the method includes determining the sizes of one or more of the defects in one or more of the subgroups separately based on the output acquired for the defects by only one of the multiple channels and a calibration parameter. The calibration parameter is different for each of the subgroups and is acquired by using another system to measure actual sizes of defects detected on other wafers.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 16, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Stephanie Chen, Subramanian Balakrishnan, Richard Wallingford
  • Patent number: 8000922
    Abstract: Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 16, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Hong Chen, Michael J. Van Riet, Chien-Huei (Adam) Chen, Jason Z. Lin, Chris Maher, Michal Kowalski, Barry Becker, Stephanie Chen, Subramanian Balakrishnan, Suryanarayana Tummala
  • Patent number: 7975245
    Abstract: Various computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects are provided. One computer-implemented method for determining if actual defects are potentially systematic defects or potentially random defects includes comparing a number of actual defects in a group to a number of randomly generated defects in a group. The actual defects are detected on a wafer. A portion of a design on the wafer proximate a location of each of the actual defects in the group and each of the randomly generated defects in the group is substantially the same. The method also includes determining if the actual defects in the group are potentially systematic defects or potentially random defects based on results of the comparing step.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: July 5, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Glenn Florence, Allen Park, Peter Rose
  • Patent number: 7968354
    Abstract: Computer-implemented methods that include correlating a backside defect with a frontside defect detected on a specimen are provided. The defects are correlated if a portion of the backside defect on the backside of the specimen is opposite to a portion of the frontside defect on the frontside of the specimen. In particular, the defects are correlated if the portion of the backside defect is aligned with the portion of the frontside defect along an axis perpendicular to the frontside and the backside of the specimen. The method may also include altering a parameter of a process tool in response to the backside defect to reduce frontside defects on additional specimen processed in the process tool. Computer-implemented methods for analyzing data representing spatial characteristics of backside defects detected on a specimen to classify the backside defects are also provided. Analyzing the data may include spatial signature analysis of the data.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: June 28, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Haller, Susan S. Lopez
  • Patent number: 7962863
    Abstract: Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer are provided. One method includes generating simulated images of the reticle features printed on the wafer using different generated models for a set of different values of exposure conditions. The method also includes determining one or more characteristics of the reticle features of the simulated images. In addition, the method includes comparing the one or more characteristics of the reticle features of the simulated images to one or more characteristics of the reticle features printed on the wafer using a lithography process. The method further includes selecting one of the different generated models as the model to be used for predicting the printability of the reticle features based on results of the comparing step.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: June 14, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Bo Su, Gaurav Verma, Hong Du, Rui-fang Shi, Scott Andrews
  • Patent number: 7940384
    Abstract: Systems and methods for blocking specular reflection and suppressing modulation from periodic features on a specimen are provided. One inspection system configured to block specular reflection and suppress modulation in an image of a specimen includes an illumination subsystem configured to illuminate the specimen with a predetermined pattern of spatially incoherent light. The system also includes an optical element configured to block light reflected from periodic features formed on the specimen and at least some light diffracted from the periodic features. The system further includes a detector configured to detect light that passes through the optical element and to generate an image of the specimen in response to the detected light. The optical element blocks specular reflection and at least partially suppresses modulation in the image due to the periodic features. The system also includes a processor configured to detect defects on the specimen using the image.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 10, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Andrew V. Hill, Robert M. Danen
  • Patent number: 7925072
    Abstract: Methods for identifying array areas in dies formed on a wafer and methods for setting up such methods are provided. One method for identifying array areas in dies formed on a wafer includes comparing an array pattern in a template image acquired in one of the array areas to a search area image acquired for the wafer. The method also includes determining areas in the search area image in which a pattern is formed that substantially matches the array pattern in the template image based on results of the comparing step. In addition, the method includes identifying the array areas in the dies formed on the wafer based on results of the determining step.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Chien-Huei (Adam) Chen, Ajay Gupta, Richard Wallingford, Kaustubh (Kaust) Namjoshi, Mike Van Riet, Michael Cook
  • Patent number: 7924434
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Patent number: 7925486
    Abstract: Computer-implemented methods, carrier media, and systems for creating a metrology target structure design for a reticle layout are provided. One computer-implemented method for creating a metrology target structure design for a reticle layout includes simulating how one or more initial metrology target structures will be formed on a wafer based on one or more fabrication processes that will be used to form a metrology target structure on the wafer and one or more initial metrology target structure designs. The method also includes creating the metrology target structure design based on results of the simulating step.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Mark Smith, Robert Hardister, Mike Pochkowski, Amir Widmann, Elyakim Kassel, Mike Adel
  • Patent number: 7912658
    Abstract: Systems and methods for determining two or more characteristics of a wafer are provided. The two or more characteristics include a characteristic of the wafer that is spatially localized in at least one dimension and a characteristic of the wafer that is not spatially localized in two dimensions.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 22, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Stephen Biellak, Daniel Kavaldjiev
  • Patent number: 7904845
    Abstract: Various methods, designs, defect review tools, and systems for determining locations on a wafer to be reviewed during defect review are provided. One computer-implemented method includes acquiring coordinates of defects detected by two or more inspection systems. The defects do not include defects detected on the wafer. The method also includes determining coordinates of the locations on the wafer to be reviewed during the defect review by translating the coordinates of the defects into the coordinates on the wafer such that results of the defect review performed at the locations can be used to determine if the defects cause systematic defects on the wafer.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: March 8, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Christophe Fouquet, Gordon Abbott, Ellis Chang, Zain K. Saidin
  • Patent number: 7894659
    Abstract: Methods for identifying an edge of a care area for an array area formed on a wafer and/or for binning defects detected in the array area are provided. One method for identifying an edge of a care area for an array area formed on a wafer includes determining a value for a difference image as a function of position from a position known to be inside the array area to a position known to be outside of the array area. The method also includes identifying the position that is located closest to the inside of the array area and that has the value greater than a threshold as a position of the edge of the care area.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 22, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Chien-Huei (Adam) Chen, Xiaoming Wang, Eugene Shifrin, Tsung-Pao Fang
  • Patent number: 7893703
    Abstract: Systems and methods for controlling deposition of a charge on a wafer for measurement of one or more electrical properties of the wafer are provided. One system includes a corona source configured to deposit the charge on the wafer and a sensor configured to measure one or more conditions within the corona source. This system also includes a control subsystem configured to alter one or more parameters of the corona source based on the one or more conditions. Another system includes a corona source configured to deposit the charge on the wafer and a mixture of gases disposed within a discharge chamber of the corona source during the deposition of the charge. The mixture of gases alters one or more parameters of the charge deposited on the wafer.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: February 22, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Jeffrey A. Rzepiela, Yiping Feng, Shiyou Pei, Alexander Kagan, Jianou Shi, Sergio Edelstein
  • Patent number: 7877722
    Abstract: Systems and methods for creating inspection recipes are provided. One computer-implemented method for creating an inspection recipe includes acquiring a first design and one or more characteristics of output of an inspection system for a wafer on which the first design is printed using a manufacturing process. The method also includes creating an inspection recipe for a second design using the first design and the one or more characteristics of the output acquired for the wafer on which the first design is printed. The first and second designs are different. The inspection recipe will be used for inspecting wafers after the second design is printed on the wafers using the manufacturing process.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 25, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Brian Duffy, Ashok Kulkarni
  • Patent number: 7873504
    Abstract: Computer-implemented methods, carrier media, and systems for creating a metrology target structure design for a reticle layout are provided. One computer-implemented method for creating a metrology target structure design for a reticle layout includes simulating how one or more initial metrology target structures will be formed on a wafer at different values of one or more parameters of one or more fabrication processes that will be used to form a metrology target structure on the wafer based on the one or more fabrication processes, one or more parameters of the wafer, and one or more initial metrology target structure designs. The method also includes simulating one or more spectra that will be produced by a predetermined metrology system configuration for each of the simulated one or more initial metrology target structures. In addition, the method includes creating the metrology target structure design based on the one or more spectra.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 18, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Christopher F. Bevis
  • Patent number: 7869040
    Abstract: An illumination subsystem configured to provide illumination for a measurement system includes first and second light sources configured to generate light for measurements in different wavelength regimes. The illumination subsystem also includes a TIR prism configured to be moved into and out of an optical path from the first and second light sources to the measurement system. If the TIR prism is positioned out of the optical path, light from only the first light source is directed along the optical path. If the TIR prism is positioned in the optical path, light from only the second light source is directed along the optical path. Various measurement systems are also provided. One measurement system includes an optical subsystem configured to perform measurements of a specimen using light in different wavelength regimes directed along a common optical path. The different wavelength regimes include vacuum ultraviolet, ultraviolet, visible, and near infrared wavelength regimes.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: January 11, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Hidong Kwak, Shankar Krishnan, Shing Lee, Haixing Zou
  • Patent number: 7869020
    Abstract: Fourier filters, inspection systems, and systems for fabricating Fourier filters are provided. One Fourier filter configured for use in an inspection system includes a substrate that is substantially transparent to light from a specimen illuminated by the inspection system. The Fourier filter also includes an array of patterned features formed on the substrate. The patterned features are formed of one or more pigments on the substrate. The patterned features are configured to block light reflected and diffracted from structures on the specimen and to allow light scattered from defects on the specimen to pass through the substrate.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 11, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Shing Lee