Patents Represented by Attorney Arnall Golden Gregory
  • Patent number: 6162241
    Abstract: A method of controlling hemostasis by applying a hemostatic agent in a tissue sealant composition. The tissue sealant is a biodegradable, biocompatible synthetic polymer that may not intrinsically possess strong hemostatic properties. Inclusion of a hemostatic material in the tissue sealant can control bleeding at the site and may also provide improved adherence of the sealant to tissue and provide shorter healing times.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: December 19, 2000
    Assignee: Focal, Inc.
    Inventors: Arthur J. Coury, Amarpreet S. Sawhney, Jeffrey A. Hubbell, C. Michael Philbrook
  • Patent number: 6160107
    Abstract: Proteins including at least one epitope of the Mi-2 antigen, which are used for the diagnosis of dermatomyositis, and proteins including at least one epitope of the PM-Scl antigen, which are used for the diagnosis of polymyositis, particularly polymyositis-scleroderma overlap disorders are provided in an easily purified form for use in immunoassays and purification of the associated autoantigens. DNA that encode these proteins and that may also be used in diagnostic assays or as probes to obtain related DNA are also provided.
    Type: Grant
    Filed: November 10, 1992
    Date of Patent: December 12, 2000
    Assignees: Oklahoma Medical Research Foundation, Board of Regents of the University of Oklahoma
    Inventors: Ira N. Targoff, Qun Ge
  • Patent number: 6160084
    Abstract: Biodegradable shape memory polymer compositions, articles of manufacture thereof, and methods of preparation and use thereof are described. In one embodiment the compositions include at least one hard segment and at least one soft segment. The T.sub.trans of the hard segment is preferably between -30 and 270.degree. C. At least one of the hard or soft segments can contain a crosslinkable group, and the segments can be linked by formation of an interpenetrating network or a semi-interpenetrating network, or by physical interactions of the segments. Objects can be formed into a given shape at a temperature above the T.sub.trans of the hard segment, and cooled to a temperature below the T.sub.trans of the soft segment. If the object is subsequently formed into a second shape, the object can return to its original shape by heating the object above the T.sub.trans of the soft segment and below the T.sub.trans of the hard segment.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: December 12, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, Andreas Lendlein, Annette Schmidt, Hans Grablowitz
  • Patent number: 6156348
    Abstract: Methods and compositions are provided for enhancing the bioadhesive properties of polymers used in drug delivery systems. The bioadhesive properties of a polymer are enhanced by incorporating an anhydride oligomer into the polymer to enhance the ability of the polymer to adhere to a tissue surface such as a mucosal membrane. Anhydride oligomers which enhance the bioadhesive properties of a polymer include oligomers synthesized from dicarboxylic acid monomers, preferably those found in Krebs glycolysis cycle, especially fumaric acid. The oligomers can be incorporated within a wide range of polymers including proteins, polysaccharides and synthetic biocompatible polymers. In one embodiment, anhydride oligomers can be incorporated within polymers used to form or coat drug delivery systems, such as microspheres, which contain a drug or diagnostic agent. The oligomers can either be solubilized and blended with the polymer before manufacture or else used as a coating with polymers over existing systems.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: December 5, 2000
    Assignee: Brown University Research Foundation
    Inventors: Camila A. Santos, Jules S. Jacob, Benjamin A. Hertzog, Gerardo P. Carino, Edith Mathiowitz
  • Patent number: 6156493
    Abstract: Streptavidin tetramers have at least one monomer containing an amino acid modification that produces a reduced binding affinity for biotin, a modified off-rate, a modified on-rate, or an altered binding enthalpy. Polynucleotides encoding the modified monomers are also provided. The modified streptavidin and chimeric streptavidin molecules are useful in methods of bioseparations and cell sorting, imaging, drug delivery, and diagnostics.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: December 5, 2000
    Assignee: University of Washington
    Inventor: Patrick S. Stayton
  • Patent number: 6149864
    Abstract: A method is provided for sterilizing materials, particularly polymers, for drug delivery and implantation, wherein the material is treated with supercritical fluid carbon dioxide at pressures in the range of 2000 to 3000 psi (140 to 210 bar) and temperatures preferably between 30 and 45.degree. C. for periods between 20 minutes and six hours, more preferably between 0.5 and 2 hours. Agitation, pressure cycling, and the presence of water were found to enhance the sterilization method, which promotes diffusion of the supercritical fluid carbon dioxide into the cells of the microorganism to thereby alter the pH within the cells, killing them. The magnitude and frequency of the pressure cycling, as well as the process time and temperature, may vary according to the type and form of the material to be sterilized and the type of organisms to be killed.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: November 21, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Angela K. Dillow, Robert S. Langer, Neil Foster, Jeffrey S. Hrkach
  • Patent number: 6150459
    Abstract: Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: November 21, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Linda G. Griffith, Darrell J. Irvine, Pallab Banerjee, Terry D. Johnson
  • Patent number: 6143495
    Abstract: Disclosed are compositions and a method for amplification of and multiplex detection of molecules of interest involving rolling circle replication. The method is useful for simultaneously detecting multiple specific nucleic acids in a sample with high specificity and sensitivity. The method also has an inherently low level of background signal. A preferred form of the method consists of an association operation, an amplification operation, and a detection operation. The association operation involves association of one or more specially designed probe molecules, either wholly or partly nucleic acid, to target molecules of interest. This operation associates the probe molecules to a target molecules present in a sample. The amplification operation is rolling circle replication of circular nucleic acid molecules, termed amplification target circles, that are either a part of, or hybridized to, the probe molecules.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: November 7, 2000
    Assignee: Yale University
    Inventors: Paul M. Lizardi, Michael Caplan
  • Patent number: 6139574
    Abstract: Solid free-form fabrication (SFF) methods are used to manufacture devices for allowing tissue regeneration and for seeding and implanting cells to form organ and structural components, which can additionally provide controlled release of bioactive agents, wherein the matrix is characterized by a network of lumens functionally equivalent to the naturally occurring vasculature of the tissue formed by the implanted cells, and which can be lined with endothelial cells and coupled to blood vessels at the time of implantation to form a vascular network throughout the matrix. The SFF methods can be adapted for use with a variety of polymeric, inorganic and composite materials to create structures with defined compositions, strengths, and densities, using computer aided design (CAD).Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP).
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: October 31, 2000
    Assignees: Children's Medical Center Corporation, Massachusetts Institute of Technology
    Inventors: Joseph P. Vacanti, Linda G. Cima, Michael J. Cima
  • Patent number: 6139871
    Abstract: The present invention provides compositions and methods for treating atherosclerosis. The compositions comprise unilamellar liposomes having an average diameter of 100-150 nanometers. Methods for treating atherosclerosis employing the compositions of the present invention are also provided.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: October 31, 2000
    Assignee: The University of British Columbia
    Inventors: Michael J. Hope, Wendi Rodrigueza
  • Patent number: 6136961
    Abstract: Highly specific biocatalytic reactions have been used to create a population of derivatives from a single starting compound. Examples demonstrate synthesis of derivatives of taxol, taxol-2'-adipate, taxol-2'-vinyl adipate, 2,3-(methylenedioxy) benzaldehyde, (.+-.)-(2-endo, 3-exo)-bicyclo (2.2.2)octo-5-ene-2,3-dimethanol, adenosine and erythromycin.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: October 24, 2000
    Assignee: EnzyMed, Inc.
    Inventors: Jonathan S. Dordick, Douglas S. Clark, Peter C. Michels, Yuri L. Khmelnitsky
  • Patent number: 6132699
    Abstract: It has been discovered that the incorporation of fluorinated gases, especially a perfluorocarbon such as octafluoropropane, into synthetic polymeric microparticles, significantly enhances echogenicity as compared with microparticles having air incorporated therein. The microencapsulated perfluorocarbon is manufactured with a diameter suitable for the targeted tissue to be imaged, for example, for intravenous or oral administration. In one embodiment, bioadhesive microparticles are formed for enhanced imaging of mucosal surfaces.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: October 17, 2000
    Assignee: Acusphere, Inc.
    Inventors: Howard Bernstein, Julie Ann Straub, Henry T. Brush, Richard E. Wing
  • Patent number: 6124120
    Abstract: Disclosed are compositions and a method for amplification of nucleic acid sequences of interest. The method is based on stand displacement replication of the nucleic acid sequences of interest by multiple primers. In one preferred form of the method, referred to as multiple strand displacement amplification, two sets of primers are used, a right set and a left set. The primers in the right set are complementary to one strand of the nucleic acid molecule to be amplified and the primers in the left set are complementary to the opposite strand. The 5' end of primers in both sets are distal to the nucleic acid sequence of interest when the primers have hybridized to the nucleic acid sequence molecule to be amplified. Amplification proceeds by replication initiated at each primer and continuing through the nucleic acid sequence of interest. A key feature of this method is the displacement of intervening primers during replication by the polymerase.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: September 26, 2000
    Assignee: Yale University
    Inventor: Paul M. Lizardi
  • Patent number: 6123861
    Abstract: Fabrication methods are provided for microchips that control both the rate and time of release of multiple chemical substances and allow for the release of a wide variety of molecules in either a continuous or pulsatile manner. In all of the preferred embodiments, a material that is impermeable to the drugs or other molecules to be delivered and the surrounding fluids is used as the substrate. Reservoirs are etched into the substrate using either chemical (wet) etching or plasma (dry) etching techniques well known in the field of microfabrication. Hundreds to thousands of reservoirs can be fabricated on a single microchip using these techniques. A release system, which includes the molecules to be delivered, is inserted into the reservoirs by injection, inkjet printing, or spin coating methods. Exemplary release systems include polymers and polymeric matrices, non-polymeric matrices, and other excipients or diluents. The physical properties of the release system control the rate of release of the molecules.
    Type: Grant
    Filed: February 11, 1998
    Date of Patent: September 26, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: John T. Santini, Jr., Michael J. Cima, Robert S. Langer
  • Patent number: 6123965
    Abstract: Methods and compositions are provided for enhancing the bioadhesive properties of polymers used in drug delivery devices. The bioadhesive properties of a polymer are enhanced by incorporating a metal compound into the polymer to enhance the ability of the polymer to adhere to a tissue surface such as a mucosal membrane. Metal compounds which enhance the bioadhesive properties of a polymer include water-insoluble metal compounds such as water-insoluble metal oxides, including oxides of calcium, iron, copper and zinc. The metal compounds can be incorporated within a wide range of polymers including proteins, polysaccharides and synthetic biocompatible polymers. In one embodiment, metal oxides can be incorporated within polymers used to form or coat drug delivery devices, such as microspheres, which contain a drug or diagnostic agent.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: September 26, 2000
    Assignee: Brown University Research Foundation
    Inventors: Jules S. Jacob, Edith Mathiowitz
  • Patent number: 6120806
    Abstract: An oral controlled release dosage form for cyanamide whereby a portion of a cyanamide dose administered to a patient remains transiently partitioned within encapsulating material, thereby retarding metabolism of the total administered cyanamide dose, is described. No investigator has reported the use of dosage forms enabling controlled release of cyanamide. The preparation, when administered to ethanol metabolizing individuals, can elevate blood acetaldehyde to such levels, and for such periods of time, that the individuals will be deterred from future alcohol consumption. The controlled release of cyanamide provides an optimal time-profile of alcohol deterrence specific for individual patients.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: September 19, 2000
    Inventor: David R. Whitmire
  • Patent number: 6121341
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as "priming". the polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, "priming" can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 19, 2000
    Assignees: Board of Regents, The University of Texas System, Focal, Inc.
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 6121008
    Abstract: A method and device are provided for the semi-quantitative and quantitative determination of an analyte in a sample. A non-competitive trap which can bind unreacted labelled receptor to analyte but has virtually no binding capabilities to receptor in the presence of analyte is used. Labelled receptor:analyte complex is trapped in a second trap. The relative amounts of unbound receptor in the non-competitive trap versus the amount of receptor:analyte complex in the second trap is a measure of the amount of analyte in the sample.
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: September 19, 2000
    Assignee: Serex, Inc.
    Inventors: Judith Fitzpatrick, Regina B. Lenda
  • Patent number: 6121015
    Abstract: A gene, flanking 5' and 3' sequences and derived cDNA encoding a rat D.sub.4 dopamine receptor that is predominantly located in the cardiovascular and retinal systems is disclosed. The cDNA has been expressed in transfected mammalian cells and demonstrated to preferentially bind dopamine antagonists such as clozapine. The cDNA is useful as a probe for related D.sub.4 dopamine receptors. Expressed in appropriate cell lines, it is useful as an in vitro screen for drugs which specifically bind to the receptor. Drugs that specifically bind to the receptor are then screened using standard methodology in rats, mice or dogs, for the physiological effects. Amino acids deduced from the determination of cDNA can be used to generate either polyclonal or monoclonal antibodies which recognize the D.sub.4 receptor sequence but do not recognize D.sub.1, D.sub.2, D.sub.3 or D.sub.5 dopamenergic receptors, for use in immunocytochemical studies, and for identification and isolation via flow sorting of D4 expressing cell types.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 19, 2000
    Assignee: Washington University
    Inventors: Karen L. O'Malley, Richard D. Todd
  • Patent number: 6120807
    Abstract: Formulations for controlled, prolonged release of GM-CSF have been developed. These are based on solid microparticles formed of the combination of biodegradable, synthetic polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and copolymers thereof with excipients and drug loadings that yield zero order or first order release, or multiphasic release over a period of approximately three to twenty one days, preferably one week, when administered by injection. In the preferred embodiment, the microparticles are microspheres having diameters in the range of 10 to 60 microns, formed of a blend of PLGA having different molecular weights, most preferably 6,000, 30,000 and 41,000. Other embodiments hare been developed to alter the release kinetics or the manner in which the drug is distributed in vivo.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: September 19, 2000
    Assignee: Immunex Corporation
    Inventors: Wayne Gombotz, Dean Pettit, Susan Pankey