Abstract: An FCC catalyst system and a process using the catalyst system are disclosed. The catalyst system comprises a metal trap component, such as bastnaesite or barium titanate, and a sulfur oxide acceptor such as a magnesium spinel in addition to a zeolite. The metal trap and sulfur oxide components are preferably in separate particles. The catalyst formulation results in improved activity believed to result from the sulfur oxide acceptor protecting the metal trap component from the harmful effects of sulfur oxides such as the formation of stable metal oxides.
Type:
Grant
Filed:
June 27, 1991
Date of Patent:
June 28, 1994
Assignee:
W. R. Grace Co.-Conn.
Inventors:
William E. Cormier, Gerald M. Woltermann, John S. Magee, Fred J. Baars, Lawrence L. Upson
Abstract: Catalytic cracking catalysts are combined with a rare-earth, preferably lanthanum-containing catalyst/additive to enhance the cracking activity and selectivity in the presence of nickel and vanadia (Ni and V). The preferred additives comprise lanthanum, neodynium oxide and/or oxychloride dispersed in a clay/alumina matrix, wherein the alumina is derived from an aluminum hydroxychloride sol.
Abstract: A silica-containing bayerite alumina is prepared by reacting aluminum sulfate, sodium aluminate and sodium silicate at a pH of about 10.5 to 11.5, preferably in the presence of finely divided magnesium hydroxide "seeds". The silica-containing bayerite is heated to obtain a hydrothermally stable silica "stabilized" eta alumina which may be used in the preparation of catalytic compositions.
Type:
Grant
Filed:
January 28, 1992
Date of Patent:
April 19, 1994
Assignee:
W. R. Grace & Co.-Conn.
Inventors:
Norman R. Laine, John A. Rudesill, Wu-Cheng Cheng
Abstract: Hydroprocessing catalysts which comprise alumina and Group VIB and VIII metal components having a desired pore size/volume distribution and high surface area, i.e. above 330 m.sup.2 /g.
Abstract: A composition comprising a coprecipitated magnesia-lanthana-alumina (MgO-La.sub.2 O.sub.3 -Al.sub.2 O.sub.3) wherein the MgO component is present as microcrystalline phase, having a BET (N.sub.2) surface area of at least 130 m.sup.2 /g, preferably combined with a catalytic oxidation and/or reducing promoter metal such as ceria, vanadia and/or titania.
Abstract: Catalytic cracking catalysts/additives which comprise rare-earth, preferably lanthanum, oxide and/or oxychloride dispersed in an acid reacted metakaolin matrix. The catalysts/additives may be combined with zeolite-containing cracking catalysts to enhance catalytic activity/selectivity in the presence of metals (Ni and V).
Type:
Grant
Filed:
August 12, 1992
Date of Patent:
September 28, 1993
Assignee:
W. R. Grace & Co.-Conn.
Inventors:
Ranjit Kumar, Ronald E. Ritter, Howard J. Schaeffer, III
Abstract: Catalyst compositions are described which comprise crystalline molecular sieve zeolites and an aluminum phosphate component having a surface area of less than about 50 m.sup.2 /g and a high degree of attrition resistance. The catalysts are particularly effective for the catalytic cracking of high molecular hydrocarbon feedstocks to obtain enhanced yields of C.sub.3 and C.sub.4 olefins such as isobutylene.
Abstract: Catalytic cracking catalysts are combined with a rare-earth, preferably lanthanum-containing catalyst/additive to enhance the cracking activity and selectivity in the presence of nickel and vanadia (Ni & V). The preferred additives comprise lanthanum, neodynium oxide and/or oxychloride dispersed in a clay/alumina matrix, wherein the alumina is derived from an aluminum hydroxychloride sol.
Abstract: Hydroprocessing catalysts which comprise alumina and Group VIB and VIII metal components having a desired pore size/volume distribution and high surface area, i.e. above 330 m.sup.2 /g.
Abstract: A carbon monoxide oxidation catalyst especially useful as a co-catalyst in fluid catalytic cracking operations is made by impregnating particulate alumina with lanthana and a small amount of platinum. Cerium must be excluded.
Abstract: A carbon monoxide oxidation catalyst especially useful as a co-catalyst in fluid catalytic cracking operations is made by impregnating particulate alumina with lanthana and a small amount of platinum. Cerium must be excluded.
Abstract: Alkali metal and alkaline earth metal containing silica alumina spinel-mullite-gamma alumina sorbents which may be used to remove sulfur oxides (SO.sub.x components) from gas streams.
Type:
Grant
Filed:
October 5, 1989
Date of Patent:
March 26, 1991
Assignee:
W. R. Grace & Co.-Conn.
Inventors:
Roger J. Lussier, William A. Welsh, James M. Masselli
Abstract: Acid reacted metakaolin useful for the preparation of catalyst and catalyst support compositions. The compositions may include solid inorganic oxides, such as zeolites, clay and/or inorganic gels. The compositions are spray dried and calcined to obtain highly active, dense, attrition resistant fluid cracking catalysts, or used in the preparation of formed catalyst supports.
Abstract: Zeolites free from heavy metal cations are ion-exchanged with alkaline earth metal cations. The exchanged zeolites provide corrosion resistance to paints for metals, especially ferrous metals, without environmental hazard caused by use of heavy-metal anti-corrosion materials such as lead, chromium, zinc, etc.
Abstract: A process for the immobilization and volume reduction of low level radioactive wastes produced from the processing of rare earth recovery processes comprising mixing the waste residue with 0.1 to 50% of a fluxing agent and optionally with 0.1 to 50% silica sand, heating the mixture to a temperature in the range of about 1200.degree. to 1800.degree. C. to form molten glass, and pouring the molten glass into a suitable container to cool and solidify into a vitrified mass. Suitable fluxing agents include sodium hydroxide, sodium carbonate, sodium borate, sodium perborate, or mixtures thereof.
Type:
Grant
Filed:
August 11, 1989
Date of Patent:
January 7, 1992
Assignee:
W. R. Grace & Co.-Conn.
Inventors:
Richard F. Wormsbecher, Alan T. Chapman, Jr., David N. Hill