Patents Represented by Attorney, Agent or Law Firm Barry A. Edelberg
-
Patent number: 5567551Abstract: A mask for ion beam lithography is made by coating a front side, sidewalls, nd a backside of a substrate with an insulating layer; opening, on the front side of the substrate, a window in the insulating layer to expose a front substrate surface; depositing an oxide membrane on the front substrate surface; opening a portion of the insulating material on the backside of the substrate to form an exposed backside of the substrate; forming a photoresist layer on the oxide membrane; patterning the photoresist layer; ion beam etching the oxide membrane through the patterned photoresist layer to completely remove selected portions of the oxide membrane and form a stenciled pattern in the oxide membrane; removing the patterned photoresist layer from the stenciled oxide membrane; removing, from the backside of the substrate, the exposed backside of the substrate to expose a backside of the stenciled pattern in the oxide membrane, thus leaving a stenciled oxide membrane, corresponding to the stenciled oxide pattern, helType: GrantFiled: April 4, 1994Date of Patent: October 22, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventors: Joseph Yahalom, Martin Peckerar
-
Patent number: 5560960Abstract: Nanoparticle metal powder having a controllable and narrow size distribution are by electrolessly plating a metal on the interior of a vesicle made of at least one polymerized phospholipid. Electroless plating may be accomplished by catalytic reduction of the metal ion or u.v. reduction of the metal ion.Type: GrantFiled: November 4, 1994Date of Patent: October 1, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventors: Alok Singh, Gan-Moog Chow, Michael Markowitz
-
Patent number: 5552505Abstract: Copolymers are formed from aromatic acetylenic monomers, or prepolymers fed therefrom, and carborane-(siloxane or silane)-unsaturated hydrocarbon polymers. These copolymers can be used as is to form useful articles, adhesives, matrix materials, and coatings for various marine and aerospace applications, or may be pyrolyzed to form carbon-ceramic composites.Type: GrantFiled: March 3, 1995Date of Patent: September 3, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventor: Teddy M. Keller
-
Patent number: 5534311Abstract: Structures having a controlled three-dimensional geometry are deposited by lectrostatically focused deposition using charged particle beam and gaseous precursors, or polarizable precursors with or without a charged particle beam. At least one apertured electrode is electrically biased with respect to the substrate surface. The resulting electrostatic field and field gradient focuses the charged particle beam or polarizable gaseous precursor molecules, and controls the three-dimensional geometry of the deposited structure. By this method, an array including many deposited structures may be simultaneously deposited on a single substrate. Thus, the disclosed method provides a fact and simple way of fabricating one or more arrays of three-dimensional structures. The method is particularly useful in the fabrication of arrays of sharp-tipped, cone-shaped conductive structures, such as field emitter tips and contacts.Type: GrantFiled: May 31, 1995Date of Patent: July 9, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventors: Jonathan L. Shaw, Henry F. Gray
-
Patent number: 5532057Abstract: A coating of india-stabilized zirconia protects a self-supporting substrate rom high temperatures, as well as vanadate and sulfate corrosion. In one method of making such a protected substrate, a coating of india-stabilized zirconia is applied to the substrate. The substrate can be a metal or ceramic surface of a gas turbine or other type of engine.Type: GrantFiled: April 27, 1995Date of Patent: July 2, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventor: Robert L. Jones
-
Patent number: 5516662Abstract: Phospholipase D enzyme is used to mediate the synthesis of a phosphatidylhydroxyalkanol in a first step. This phosphatidylhydroxyalkanol is reacted to produce a headgroup modified phospholipid in a subsequent step. In the first step, phospholipase D enzyme extract mediates transphosphatidylation of a phospholipid with an alcohol containing at least two hydroxyl groups per molecule, producing reproducible and nearly quantitative yields of a phosphatidylhydroxyalkanol. In the subsequent step, the hydroxyl head group of the phosphatidylhydroxyalkanol is further reacted with amino, carboxylic, halogen or thiol containing molecules to produce a headgroup modified phospholipid.Type: GrantFiled: May 11, 1995Date of Patent: May 14, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventor: Alok Singh
-
Patent number: 5494634Abstract: Graphite or carbon particles with a graphitic skin are intercalated with a compound including an oxidized form of a metal and then reduced in a hydrogen atmosphere. This process reduces the driving force for the galvanic reaction between the particles and active metals in aqueous environments. The particles may be present as a reinforcement for a metal matrix (e.g., graphite/aluminum metal matrix composites) or as a reinforcement for a non-metallic material (e.g., graphite/polyimide, graphite/polyester or graphite/cyanate composites). In the latter case, the composite is adjacent to a metal in a structure.By way of example, the graphite or carbon particle may be a fiber, the metal subject to attack may be aluminum or magnesium, and the intercalation compound may be NiCl.sub.2.Type: GrantFiled: January 15, 1993Date of Patent: February 27, 1996Assignee: The United States of America as represented by the Secretary of the NavyInventors: Alan S. Edelstein, Richard K. Everett, Patricia P. Trzaskoma, Benji Maruyama
-
Patent number: 5477482Abstract: A random access memory element utilizes giant magnetoresistance. The element includes at least one pair of ferromagnetic layers sandwiching a nonmagnetic conductive layer. At least one of the two ferromagnetic layers has a magnetic moment oriented within its own plane. The magnetic moment of at least the first ferromagnetic layer of the pair has its magnetic moment oriented within its own plane and is typically fixed in direction during use. The second ferromagnetic layer of the pair has a magnetic moment which has at least two preferred directions of orientation. These preferred directions of orientation may or may not reside within the plane of the second ferromagnetic layer. The bit of the memory element may be set by applying to the element a magnetic field which orients the magnetic moment of the second ferromagnetic layer in one or the other of these preferred orientations.Type: GrantFiled: October 1, 1993Date of Patent: December 19, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Gary A. Prinz
-
Patent number: 5471072Abstract: Gold, which is the commonly used metallization on .beta.-silicon carbide, is known to degrade at temperatures above 450.degree. C. It also exhibits poor adhesion to silicon carbide. Schottky contacts with platinum metallization have rectifying characteristics similar to contacts with gold metallization. The platinum Schottky contacts remain stable up to 800.degree. C. Adhesion of the platinum deposited at slightly elevated temperatures is also superior to that for gold. Platinum provides a metallization that is physically more rugged and thermally more stable than conventional gold metallization.Type: GrantFiled: December 13, 1993Date of Patent: November 28, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Nicolas A. Papanicolaou
-
Patent number: 5466578Abstract: The fluorescence of polycyclic aromatic labels, and excimers of these lab, attached to nucleic acids is greatly enhanced by the presence of quaternary ammonium surfactants having at least one long chain (C4 or greater) alkyl group. This enchancement may be advantageously used in Pi Overlapping Rings Systems Contained in a Homogeneous Assay (PORSCHA) and in conventional assays.Type: GrantFiled: July 26, 1994Date of Patent: November 14, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: David A. Kidwell
-
Patent number: 5464926Abstract: Oligomeric monomers are produced by reaction of a bisphenol compound with ther a dihalobenzophenone or a (2,2)bis(4-halophenyl)hexafluoropropane and any other activated halogen containing aromatic compounds in the presence of a base and an appropriate solvent. The resulting oligomeric product, a dialkaline bisphenate terminated salt, is then reacted with 4-nitrophthalonitrile to form an oligomer-based phthalonitrile. These oligomers, in the presence or absence of an curing agent, may then be heated to form high temperature thermosetting polymers. These polymers can potentially be used as advanced materials for composites, as adhesives, and for microelectronic applications.Type: GrantFiled: July 27, 1994Date of Patent: November 7, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Teddy M. Keller
-
Patent number: 5441876Abstract: Phospholipase D enzyme is used to mediate the synthesis of a phosphatidylhydroxyalkanol in a first step. This phosphatidylhydroxyalkanol is reacted to produce a headgroup modified phospholipid in a subsequent step. In the first step, phospholipase D enzyme extract mediates transphosphatidylation of a phospholipid with an alcohol containing at least two hydroxyl groups per molecule, producing reproducible and nearly quantitative yields of a phosphatidylhydroxyalkanol. In the subsequent step, the hydroxyl head group of the phosphatidylhydroxyalkanol is further reacted with amino, carboxylic, halogen or thiol containing molecules to produce a headgroup modified phospholipid.Type: GrantFiled: July 30, 1993Date of Patent: August 15, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Alok Singh
-
Patent number: 5418060Abstract: A coating of india-stabilized zirconia protects a self-supporting substrate rom high temperatures, as well as vanadate and sulfate corrosion. In one method of making such a protected substrate, a coating of india-stabilized zirconia is applied to the substrate. The substrate can be a metal or ceramic surface of a gas turbine or other type of engine.Type: GrantFiled: February 18, 1994Date of Patent: May 23, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Robert L. Jones
-
Patent number: 5413679Abstract: A method of producing a silicon membrane has a step of forming an etch stop layer on an upper surface of a silicon substrate having lower and upper opposing surfaces, the etch stop layer comprising an alloy of silicon and at least one other Group IV element. The method of producing a silicon membrane has another step of forming a cap layer on the etch stop layer, the cap layer having lower and upper opposing surfaces with the lower surface contacting the etch stop layer. The method of producing a silicon membrane has a further step of removing a portion of the silicon substrate at a time when the upper surface of the cap layer is exposed, the portion of the silicon substrate being removed extending from the upper surface of the silicon substrate to the lower surface of the silicon substrate to thereby define an exposed portion of the etch stop layer. The exposed portion of the etch stop layer may be removed.Type: GrantFiled: June 30, 1993Date of Patent: May 9, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: David J. Godbey
-
Patent number: 5389441Abstract: Sized fibers, for use as reinforcements in high temperature polymeric comites, are prepared by coating the outside surface of the fibers with an amorphous, B-stage bisphthalonitrile prepolymer. The prepolymer may be prepared by curing a bisphthalonitrile monomer with an organic amine, an aromatic organic acid, a mineral acid, a Lewis acid or a salt of any of the above. Then, the fibers are coated by passage through an organic solution of the prepolymer. Either before or after completely curing the prepolymer coating on the fibers, the coated fibers are covered with a resin, for example, by passage through a solution or melt of a polyimide or bisphthalonitrile resin. If the phthalonitrile coating was incompletely cured prior to covering the phthalonitrile-coated fiber with the resin, the heat during the subsequent cure of the resin also completely cures the phthalonitrile coating. The resulting composite has excellent high temperature properties.Type: GrantFiled: June 28, 1993Date of Patent: February 14, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventor: Teddy M. Keller
-
Patent number: 5381755Abstract: Diamond crystals and films having a well-controlled amount of dopant therein are synthesized by incorporating a dopant into a deposition species formed from a gaseous source of carbon and a gaseous source of hydrogen. Flame and/or plasma deposition may be used. Various apparatuses for carrying out the growth of the doped diamond are also disclosed.Type: GrantFiled: August 20, 1991Date of Patent: January 17, 1995Assignee: The United States of America as represented by the Secretary of the NavyInventors: John W. Glesener, Arthur A. Merrish, Keith A. Snail
-
Patent number: 5374414Abstract: Filamentous substrates are coated with diamond by a chemical vapor deposin process. The substrate may then be etched away to form a diamond filament. In a preferred embodiment, the substrate is copper-coated graphite. The copper initially passivates the graphite, permitting diamond nucleation thereon. As deposition continues, the copper-coated graphite is etched away by the active hydrogen used in the deposition process. As a result a substrateless diamond tubule is formed. Diamond-coated and diamond filaments are useful as reinforcement materials for composites, as filtration media in chemical and purification processes, in biomedical applications as probes and medicinal dispensers, and in such esoteric areas as chaff media for jamming RF frequencies.Type: GrantFiled: June 6, 1991Date of Patent: December 20, 1994Assignee: The United States of America as represented by the Secretary of the NavyInventors: Arthur A. Morrish, Paul M. Natishan, Benji Maruyama, Pehr E. Pehrsson
-
Patent number: 5369007Abstract: A microassay card includes an upper layer containing wells for receiving a liquid sample. A second layer of the card, beneath the first layer, includes a supporting surface bound to a reactive species. A third layer includes a superabsorbent support impregnated with an indicator. Typically, the indicator is a substrate for an enzyme, such as a reduced dye precursor and a source of hydrogen peroxide necessary for the action of the enzyme upon the substrate to cause a spectral change in the absorbent layer. By selecting the structure of the first and second layers, the card can be formatted for a displacement assay or a competitive assay. The microassay card of the present invention is particularly useful for drug testing.Type: GrantFiled: August 26, 1992Date of Patent: November 29, 1994Assignee: The United States of America as represented by the Secretary of the NavyInventor: David A. Kidwell
-
Patent number: 5364819Abstract: A Faraday rotator glass composition based on a fluoride glass, phosphate glass, fluorophosphate glass or a mixture thereof is doped with a lanthanide in a concentration sufficient to provide a Verdet constant above at least 2870 deg/Tesla-meter [(1 min/cm-Oe).times.(1.667.times.10.sup.4)=1 deg/Tesla-meter] and optical transmission above at least 50 percent in a 25 mm thick polished glass sample at least at one wavelength in the 200 to 400 nm wavelength region. The Faraday rotator glass also includes monovalent non-lanthanide cations such as Na, Li, K or mixtures thereof in a concentration sufficient to provide a Verdet constant above at least 2870 deg/Tesla-meter and optical transmission above at least 50 percent in a 25 mm thick polished glass sample at least at one wavelength in the 200 to 400 nm wavelength region.Type: GrantFiled: April 28, 1993Date of Patent: November 15, 1994Assignee: The United States of America as represented by the Secretary of the NavyInventors: James L. Dexter, David G. Cooper, Douglas H. Blackburn, David C. Cranmer, Dale A. Kauffman
-
Patent number: 5364574Abstract: A composition is disclosed for forming an EMI shielding gasket for instalion against a metal object, such as an aluminum frame member of an aircraft, wherein the composition is comprised of a mixture of a prepolymer composition of a flexible polyurethane material, a sacrificial metallic material which provides electrical conductivity and anodic protection against corrosion of the metal object, and a curing agent for curing the prepolymer composition. The sacrificial metallic material can be a metal salt selected from the group consisting of water soluble zinc and cadmium salts. Water can also be present to serve two functions, as a curing agent for the polyurethane and as a foaming agent, producing carbon dioxide. A method is also providing for installing an EMI shielding gasket on an aircraft between a graphite skin panel and a metal frame member. The composition for forming the EMI shielding gasket on a metal surface can also include an agent that cleans the metal surface to which the gasket is applied.Type: GrantFiled: April 2, 1992Date of Patent: November 15, 1994Assignee: The United States of America as represented by the Secretary of the NavyInventors: Ramanathan Panayappan, John C. Cooper, deceased