Patents Represented by Attorney Bryant R. Gold
-
Patent number: 7953491Abstract: Audio streaming is made available throughout the signal processing path of the speech processor of a cochlear implant or other audio signal processor. Audio streaming comprises the digitally phase locked playback of a real time n-bit digital audio stream, where n may be a large number, e.g., 8, 12, 16, 24 or 32, that emanates (unsolicited) from an operating speech processor. A number of sample points are made available long the processing chain of a digital signal processor (DSP) used within the speech processor of the cochlear implant. Audio streaming may occur at any sample point. The signal at a selected sample point may be selectively monitored in order to allow appropriate diagnostics to be performed. Audio streaming utilizes an auto-referencing mixed-mode phase locked loop. Such phase locked loop processes an asynchronous stream of digital audio samples that arrive at a designated location, e.g., a selected sample point, at a consistent, but unknown, average rate.Type: GrantFiled: August 23, 2010Date of Patent: May 31, 2011Assignee: Advanced Bionics, LLCInventor: Lee F Hartley
-
Patent number: 7937155Abstract: An envelope based amplitude mapping achieves the signal compression required to provide a natural sound level without the high processor loading or waveform alteration. In one embodiment, the output of a family of parallel bandpass filters is processed by an envelope detector, followed by decimation. The resulting reduced data rate envelope is log mapped to produce a scaling factor for the original high data rate bandpass filter output sequence. The resulting scaled signal determines the current level for stimulation of the cochlea for each frequency band, which stimulation achieves a log mapping of the sound amplitude effect similar to natural hearing, while reducing processor load, and preserving waveform shape.Type: GrantFiled: April 28, 2009Date of Patent: May 3, 2011Assignee: Advanced Bionics, LLCInventor: Andrew W. Voelkel
-
Patent number: 7933657Abstract: Alternative stimuli, i.e., stimuli other than the constant amplitude stimuli used in prior fitting schemes, are used to set the parameters of a cochlear implant system. The use of such alternative stimuli allows the entire fitting process to be completed in a very short time period, and generally eliminates the need for secondary adjustments. In one preferred embodiment, the alternative stimuli comprise white noise that is internally generated within the speech processor.Type: GrantFiled: October 13, 2008Date of Patent: April 26, 2011Assignee: Advanced Bionics, LLCInventors: Philip A. Segel, Edward H. Overstreet, Tracey L. Kruger, Lakshmi N. Mishra
-
Patent number: 7835800Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. The spatially-defined electrode pair may be a physical electrode pair or a virtual electrode pair. A virtual electrode pair includes at least one virtual electrode contact. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken.Type: GrantFiled: December 13, 2008Date of Patent: November 16, 2010Assignee: Advanced Bionics, LLCInventors: Philip A Segel, Tracey L Kruger, Leonid M Litvak
-
Patent number: 7835799Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. The spatially-defined electrode pair may be a physical electrode pair or a virtual electrode pair. A virtual electrode pair includes at least one virtual electrode contact. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken.Type: GrantFiled: December 13, 2008Date of Patent: November 16, 2010Assignee: Advanced Bionics, LLCInventors: Philip A Segel, Tracey L Kruger, Leonid M Litvak
-
Patent number: 7818066Abstract: A hand-held remote unit functions as both a remote status device and a control device for a cochlear implant system. When placed near the headpiece of a cochlear implant system, the remote unit monitors the forward telemetry signals transmitted between an external sound processor, e.g., a behind-the-ear (BTE) sound processor, and an implanted unit, thereby providing the remote unit with the ability to output status information regarding the implant system. The remote unit may also generate a back telemetry signal that when properly received by the sound processor causes a forward telemetry signal to be generated that controls the implant unit.Type: GrantFiled: September 18, 2006Date of Patent: October 19, 2010Assignee: Advanced Bionics, LLCInventor: Logan P Palmer
-
Patent number: 7787957Abstract: Audio streaming is made available throughout the signal processing path of the speech processor of a cochlear implant or other audio signal processor. Audio streaming comprises the digitally phase locked playback of a real time n-bit digital audio stream, where n may be a large number, e.g., 8, 12, 16, 24 or 32, that emanates (unsolicited) from an operating speech processor. A number of sample points are made available long the processing chain of a digital signal processor (DSP) used within the speech processor of the cochlear implant. Audio streaming may occur at any sample point. The signal at a selected sample point may be selectively monitored in order to allow appropriate diagnostics to be performed. Audio streaming utilizes an auto-referencing mixed-mode phase locked loop. Such phase locked loop processes an asynchronous stream of digital audio samples that arrive at a designated location, e.g., a selected sample point, at a consistent, but unknown, average rate.Type: GrantFiled: May 4, 2006Date of Patent: August 31, 2010Assignee: Advanced Bionics, LLCInventor: Lee F Hartley
-
Patent number: 7636603Abstract: A bionic ear cochlear stimulation system has the capability to stimulate fast enough to induce stochastic neural firing, thereby acting to restore “spontaneous” neural activity. Such neurostimulation involves the use of a high rate pulsitile stimulation signal that is amplitude modulated with sound information. Advantageously, by using such neurostimulation, a fitting system may be utilized that does not normally require T-level threshold measurements. T-level threshold measurements are not required in most instances because the high-rate pulsitile stimulation, even though at levels that would normally be a sub-threshold electrical stimulus, is able to modulate neural firing patterns in a perceptible way.Type: GrantFiled: June 30, 2006Date of Patent: December 22, 2009Assignee: Advanced Bionics, LLCInventors: Edward H Overstreet, Michael A Faltys
-
Patent number: 7571005Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. The spatially-defined electrode pair may be a physical electrode pair or a virtual electrode pair. A virtual electrode pair includes at least one virtual electrode contact. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken.Type: GrantFiled: September 1, 2006Date of Patent: August 4, 2009Assignee: Advanced Bionics, LLCInventors: Philip A Segel, Tracey L. Kruger, Leonid M Litvak
-
Patent number: 7542806Abstract: An envelope based amplitude mapping achieves the signal compression required to provide a natural sound level without the high processor loading or waveform alteration. In one embodiment, the output of a family of parallel bandpass filters is processed by an envelope detector, followed by decimation. The resulting reduced data rate envelope is log mapped to produce a scaling factor for the original high data rate bandpass filter output sequence. The resulting scaled signal determines the current level for stimulation of the cochlea for each frequency band, which stimulation achieves a log mapping of the sound amplitude effect similar to natural hearing, while reducing processor load, and preserving waveform shape.Type: GrantFiled: February 2, 2006Date of Patent: June 2, 2009Assignee: Advanced Bionics, LLCInventor: Andrew W Voelkel
-
Patent number: 7493170Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken. However, should there be errors in the place-pitch ranking, which errors evidence perceptual place-confusions, then a search is undertaken for the spread of the perceptual confusion by separating the target channel and competing channel by one electrode contact at a time.Type: GrantFiled: September 1, 2006Date of Patent: February 17, 2009Assignee: Advnaced Bionics, LLCInventors: Philip A Segel, Tracey L Kruger
-
Patent number: 7444185Abstract: An active electrode array provides a programmable number of electrode contacts through which stimulation current may be selectively delivered to surrounding tissue, preferably through the use of appropriate stimulation groups. The active electrode array provides a large number of both medial and lateral contacts, any one of which may be selected to apply a stimulus pulse through active switching elements included within the array. The active switching elements included within the array operate at a very low compliance voltage, thereby reducing power consumption.Type: GrantFiled: September 23, 2005Date of Patent: October 28, 2008Assignee: Advanced Bionics, LLCInventors: Michael A Faltys, Glen A Griffith, William VanBrooks Harrison
-
Patent number: 7295878Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.Type: GrantFiled: October 22, 2004Date of Patent: November 13, 2007Assignees: Advanced Bionics Corporation, Quallion LLCInventors: Paul M Meadows, Carla Mann Woods, Joey Chen, Hisashi Tsukamoto
-
Patent number: 7292891Abstract: A system for allowing bilateral cochlear implant systems to be networked together. An adapter module that forms part of the system allows two standalone BTE units to be synchronized both temporally and tonotopically in order to maximize a patients listening experience. The system further allows a peer-to-peer network and protocol that includes two BTE units during normal operation, or two BTE units plus a host controller (PC, PDA, etc. . . . ) during fitting. The bilateral cochlear network includes four main components: (a) a communications interposer adapted to be inserted between the BTE battery and the BTE housing or modified BTE devices; (b) a communication channel over which communication takes place between the connected devices, including the protocol governing access to such channel; (c) the synchronization mechanisms used to achieve synchronization between the connected devices; and (d) a bilateral fitting paradigm.Type: GrantFiled: August 13, 2002Date of Patent: November 6, 2007Assignee: Advanced Bionics CorporationInventors: Lee F Hartley, Michael A Faltys
-
Patent number: 7251530Abstract: Errors in pitch (frequency) allocation within a cochlear implant are corrected in order to provide a significant and profound improvement in the quality of sound perceived by the cochlear implant user. In one embodiment, the user is stimulated with a reference signal, e.g., the tone “A” (440 Hz) and then the user is stimulated with a probe signal, separated from the reference signal by an octave, e.g., high “A” (880 Hz). The user adjusts the location where the probe signal is applied, using current steering, until the pitch of the probe signal, as perceived by the user, matches the pitch of the reference signal, as perceived by the user. In this manner, the user maps frequencies to stimulation locations in order to tune his or her implant system to his or her unique cochlea.Type: GrantFiled: December 9, 2003Date of Patent: July 31, 2007Assignee: Advanced Bionics CorporationInventors: Edward H Overstreet, Leonid M Litvak, William Vanbrooks Harrison
-
Patent number: 7248929Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.Type: GrantFiled: April 18, 2003Date of Patent: July 24, 2007Assignees: Advanced Bionics Corporation, Quallion, LLCInventors: Paul M Meadows, Carla Mann Woods, Hisashi Tsukamoto, Joey Chen
-
Patent number: 7248926Abstract: A status indicator is provided for use with a medical device that employs a power transmitting coil. In one embodiment, the status indicator comprises a receiving coil and feedback element. The feedback element, such as a light emitting diode (LED) or liquid crystal display (LCD), is electrically coupled to the receiving coil. In another embodiment a status indicator is incorporated into the medical device, which status indicator comprises a feedback element and electronic circuitry for detecting device function and program selection. The circuitry and feedback element are incorporated into the medical device such as on the earhook of a behind-the-ear (BTE) hearing device.Type: GrantFiled: August 29, 2003Date of Patent: July 24, 2007Assignee: Advanced Bionics CorporationInventors: Carla Mann Woods, Michael A Faltys, Lee F Hartley
-
Patent number: 7224815Abstract: A hearing aid module is shaped for insertion into a tunnel made through the soft tissue that connects the retro-auricular space with the ear canal. The hearing aid module contains a speaker or auditory transducer, a battery or other power source powering the module, signal processing circuitry, and a microphone. Telemetry circuitry within the module allows the signal processing circuitry to be programmed with a desired frequency response or signal processing strategy using an external programming unit. A remote control unit permits the user to make simple adjustments, such as volume and/or tone (frequency) control.Type: GrantFiled: September 1, 2004Date of Patent: May 29, 2007Assignee: Advanced Bionics CorporationInventors: Albert A Maltan, Alfred E Mann, James P McGivern, Philip H Lee
-
Patent number: 7225028Abstract: A system for treating patients affected both by hearing loss and by balance disorders related to vestibular hypofunction and/or malfunction, which includes sensors of sound and head movement, processing circuitry, a power source, and an implantable electrical stimulator capable of stimulating areas of the cochlea and areas of the vestibular system.Type: GrantFiled: May 20, 2005Date of Patent: May 29, 2007Assignees: Advanced Bionics Corporation, Johns Hopkins School of MedicineInventors: Charles C Della Santina, Michael A Faltys
-
Patent number: 7211510Abstract: A method of stacking dice in an electronic circuit includes controlling a size of a hole made in a connection pad on each die of said dice to selectively provide an electrical connection to a particular die in the stack. Additionally, a method of stacking dice in an electronic circuit includes forming holes in each of the dice, and providing electrical connection material selectively at some of the holes to provide for selective electrical connections among the dice. A stack of dice in an electronic circuit includes a number of dice stacked on top of each other, each die in the stack having one or more holes therein, conductive material extending through the holes and making electrical connection between one or more of the dice in the stack and the electronic circuit.Type: GrantFiled: September 9, 2004Date of Patent: May 1, 2007Assignee: Advanced Bionics CorporationInventor: Paul Milton Meadows