Patents Represented by Attorney, Agent or Law Firm Charles E. Runyan
  • Patent number: 6809209
    Abstract: The invention addresses an composition of matter comprising a cation [Ct]+ and an anion [A]−, the anion comprises a core Group-13 element bound to partially or completely fluorinated fluoroaryl ligands, at least one of the fluoroaryl ligands is substituted with a Group-15 element that has been rendered essentially inert for subsequent chemical reaction through its unbonded electron pair by substituting an electron-withdrawing group on it. [Ct]+ may be selected from anilinium and ammonium cations, trityl carbenium cations, Group-11 metal cations, silylium cations, the cations of the hydrated salts of Group-1 or -2 metals, and derivatives of the foregoing anilinium, ammonium, trityl carbenium, and silylium cations containing C1-C20 hydrocarbyl, hydrocarbylsilyl, or hydrocarbylamine substituents for one or more hydrogen atoms of said cations.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: October 26, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: George Rodriguez
  • Patent number: 6750307
    Abstract: A polyolefin product is provided which comprises a branched olefin copolymer having an isotactic polypropylene backbone, polyethylene branches and, optionally, one or more comonomers. The total comonomer content of the branched olefin copolymer is from 0 to 20 mole percent. Also, the mass ratio of the isotactic polypropylene to the polyethylene ranges from 99.9:0.1 to 50:50. Additionally, a process is provided for preparing a branched olefin copolymer which comprises: a) copolymerizing ethylene, optionally with one or more copolymerizable monomers, in a polymerization reaction under conditions sufficient to form copolymer having greater than 40% chain end-group unsaturation; b) copolymerizing the product of a) with propylene and, optionally, one or more copolymerizable monomers, in a polymerization reactor under suitable polypropylene polymerization conditions using a chiral, stereorigid transition metal catalyst capable of producing isotactic polypropylene; and c) recovering a branched olefin copolymer.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: June 15, 2004
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Weiqing Weng, Armen Dekmezian, Eric J. Markel, Avinash Gadkari, Jean-Marc Dekoninck
  • Patent number: 6590055
    Abstract: This invention relates to olefin polymers particularly suited to satisfying the dielectric properties required in electrical device use. The olefin polymers can be prepared by contacting polymerizable olefin monomers with catalyst complexes of Group 3-11 metal cations and noncoordinating or weakly coordinating anion compounds bound directly to the surfaces of finely divided substrate particles or to polymer chains capable of effective suspension or solvation in polymerization solvents or diluents under solution polymerization conditions. Thus, the invention includes polyolefin products prepared by the invention processes, particularly ethylene-containing copolymers, having insignificant levels of mobile, negatively charged particles as detectable by Time of Flight SIMS.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 6576686
    Abstract: This invention relates generally to linear tetrablock copolymer compositions and their use in road marking applications. These tetrablock copolymers contain polystyrene, polyisoprene and polybutadiene components. Road marking compounds prepared from these copolymers further contain a hydrocarbon resin.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: June 10, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Roger Robert Delmé, Jacques Bernard Lechat, Chantal Mathilde Martin
  • Patent number: 6573350
    Abstract: Branched ethylene-propylene compositions which have improved melt strength and shear thinning are provided. The weight average branching index g′ for the higher molecular weight region of the ethylene-propylene composition is less than 0.95. Additionally, a novel process is provided for efficiently producing a branched ethylene-propylene composition comprising: a) contacting propylene monomers and ethylene monomers in a reactor with an inert hydrocarbon solvent or diluent and a catalyst composition comprising one or more single site catalyst compounds capable of producing an ethylene-propylene polymer at a temperature from about 50° C. to about 180° C., wherein the ratio in the reactor of the propylene and ethylene monomers to the inert hydrocarbon solvent or diluent is less than 2.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: June 3, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Eric J. Markel, Weiqing Weng, Armenag H. Dekmezian
  • Patent number: 6569965
    Abstract: Branched ethylene-propylene compositions which have improved melt strength and shear thinning are provided. The weight average branching index g′ for the higher molecular weight region of the ethylene-propylene composition is less than 0.95. Additionally, a novel process is provided for efficiently producing a branched ethylene-propylene composition comprising: a) contacting propylene monomers and ethylene monomers in a reactor with an inert hydrocarbon solvent or diluent and a catalyst composition comprising one or more single site catalyst compounds capable of producing an ethylene-propylene polymer at a temperature from about 50° C. to about 180° C., wherein the ratio in the reactor of the propylene and ethylene monomers to the inert hydrocarbon solvent or diluent is less than 2.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: May 27, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Eric J. Markel, Weiqing Weng, Armenag H. Dekmezian
  • Patent number: 6562919
    Abstract: This application discloses triphenyl carbenium NCA's as catalyst activators for a class of asymmetrically bridged hafnocene catalyst precursors. These catalyst precursors are activated into olefin polymerization catalysts and are suitable for gas, solution, and slurry-phase polyermization reactions. The disclosed bridge is methylenyl- or silanylenyl-based and is optionally, alkyl or aryl substituted. The catalytic activity of the disclosed hafnocene catalyst precursors is substantially enhanced over identical catalysts that are activated with other activators.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: May 13, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna Jean Crowther, Bernard Jean Folie
  • Patent number: 6562920
    Abstract: This invention relates to olefin polymerization processes suitable for limiting or eliminating aromatic solvents or diluents. The invention processes can be conducted by contacting polymerizable olefin monomers with catalyst complexes of Group 3-11 metal cations and noncoordinating or weakly coordinating anions bound directly to the surfaces of finely divided substrate particles or to polymer chains capable of effective suspension or solvation in polymerization solvents or diluents under polymerization conditions. These processes minimize problems associated with using largely insoluble organometallic or organometalloid catalysts and cocatalysts in aliphatic, solution, or diluent polymerization processes.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: May 13, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 6555635
    Abstract: Polymeric compositions of matter are described comprising olefin polymer chains having Mn of about 400 to 75,000, a ratio of vinyl groups to total olefin groups according to the formula vinyl ⁢   ⁢ groups olefin ⁢   ⁢ groups ≥ [ comonomer ⁢   ⁢ mole ⁢   ⁢ percentage + 0.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: April 29, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Eric J. Markel
  • Patent number: 6541410
    Abstract: This description addresses ionic compositions of matter comprising positively charged cations [Ct]+ and negatively charged anions [A]−, said anion comprising a central core Group 13 element to which are bound fluoroaryl ligands, at least one of said fluoroaryl ligands being substituted with a siloxy group represented by the symbols—SiOR3, wherein R is a C1-C30 hydrocarbyl or hydrocarbylsilyl substituent. [Ct]+ may be. selected from any capable of use with olefin polymerization catalysts and typically will be from the group consisting of anilinium and ammonium cations, trityl carbenium cations, Group 11 metal cations, silylium cations, the cations of the hydrated salts of Group 1 or 2 metals, and derivatives of the foregoing anilinium, ammonium, trityl carbenium, and silylium cations containing C1-C20 hydrocarbyl, hydrocarbylsilyl, or hydrocarbylamine substituents for one or more hydrogen atoms of said cations.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: April 1, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: George Rodriguez
  • Patent number: 6518215
    Abstract: The invention generally relates to a catalyst, particularly a metallocene catalyst and catalyst system useful in the polymerization of olefins into a polymer product. The polymer product has a broad molecular weight distribution, a high molecular weight and a narrow composition distribution and is easily processable.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: February 11, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Lee Bamberger, Moses Olukayode Jejelowo
  • Patent number: 6506857
    Abstract: The invention is directed to bridged metallocene catalyst complexes that are sufficiently soluble in aliphatic solvents to be particularly suitable for solution olefin polymerization processes such that olefin copolymers can be prepared with high molecular weights and catalyst activities particularly at high polymerization reaction temperatures. More specifically, the invention particularly relates to a polymerization process for ethylene copolymers having a density of about 0.850 to about 0.940 comprising contacting, under solution polymerization conditions at a reaction temperature at or above 60° C. to 250° C.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: January 14, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Francis C. Rix
  • Patent number: 6500563
    Abstract: Improved thermoplastic polymer elastic film blend compositions including a crystalline isotactic polypropylene component and a crystallizable alpha-olefin and propylene copolymer component, the copolymer having crystallizable alpha-olefin sequences. In a preferred embodiment, improved thermoplastic polymer blends are provided made up of from 0% to 95%, preferably 2% to 40 weight % of the crystalline isotactic polypropylene and from 5% to 100%, preferably 60% to 98 weight % of a crystallizable ethylene and propylene copolymer, wherein the copolymer has isotactically crystallizable propylene sequences and is predominately propylene. The resultant blends manifest unexpected compatibility characteristics, and improved resistance to elastic deformation of the crystalline isotactic polypropylene and from of a crystallizable ethylene and propylene copolymer.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Jeffrey Middlesworth
  • Patent number: 6492473
    Abstract: The invention encompasses a mixed transition metal olefin polymerization catalyst system suitable for the polymerization of olefin monomers comprising one late transition metal catalyst system and at least one different catalyst system selected from the group consisting of late transition metal catalyst systems, transition metal metallocene catalyst systems or Ziegler-Natta catalyst systems. Preferred embodiments include at least one late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure and at least one transition metal metallocene catalyst system comprising a Group 4 metal complex stabilized by at least one ancillary cyclopentadienyl ligand. The polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under polymerization conditions.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: December 10, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann Marie Canich, George Alan Vaughan, Phillip T. Matsunaga, David Edward Gindelberger, Timothy Daniel Shaffer, Kevin Richard Squire
  • Patent number: 6489480
    Abstract: This description addresses fluorinated amine compounds meeting the general formula R′iArF—ER2, where ArF is a fluoroaryl group, E is nitrogen or phosphorous, each R is independently a C1-C20 hydrocarbyl group; or the two Rs may connect to form an unsubstituted or substituted C2-C20 cycloaliphatic group, R′ is a C1-C20 hydrocarbyl or halogenated hydrocarbyl, and i is 0, 1 or 2. These compounds may be protonated with strong Bronsted acids to form protonated amine compounds that are useful for the preparation of organometallic catalyst-cocatalyst compounds comprising noncoordinating or weakly coordinating anions. The resulting organometallic catalyst-cocatalyst complexes can be effectively used as olefin polymerization catalysts.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: George Rodriguez
  • Patent number: 6489413
    Abstract: The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph C. Floyd, Moses Olukayode Jejelowo, Donna Jean Crowther, George Alan Vaughan, Ching Tai Lue
  • Patent number: 6486088
    Abstract: This application discloses triphenyl carbenium NCA's as catalyst activators for a class of asymmetrically bridged hafnocene catalyst precursors. These catalsyst precursors are activated into olefin polymerization catalysts and are suitable for gas, solution, and slurry-phase polymerization reactions. The disclosed bridge is methylenyl- or silanylenyl-based and is optionally, alkyl or aryl substituted. The catalytic activity of the disclosed hafnocene catalyt precursors is substantially enhanced over identical catalysts that are activated with other activators.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna Jean Crowther, Bernard Jean Folie
  • Patent number: 6486278
    Abstract: This invention is a solution process for the preparation of ethylene-&agr;-olefin-diolefin copolymers comprising contacting ethylene, one or more &agr;-olefin monomer, and one or more cyclic diene monomer, with a catalyst composition comprising a bridged, bis(cyclopentadienyl) zirconium compound having an unsubstituted cyclopentadienyl ligand, a multiply substituted cyclopentadienyl ligand, said ligands bridged by a covalent bridging group containing one or more Group 14 element, and two uninegative, activation reactive ligands and a catalyst activator compound. The invention process exhibits high catalyst activity, high comonomer incorporation and high diene monomer conversion rates and is particularly suitable for the preparation of elastomeric ethylene-propylene or ethylene-propylene-diene monomer elastomers.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rinaldo S. Schiffino, Donna J. Crowther
  • Patent number: 6479598
    Abstract: Petroleum resins are produced using a supported BF3 cocatalyst complex. Preferably the cocatalyst is organic such as an alcohol or a carboxylic acid. Use of the catalyst in supported form together with the cocatalyst enables control over both Bronsted and Lewis acidity leading to better control of resin properties. Waste disposal and catalyst handling problems are also overcome.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: November 12, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth Lewtas, Maria Leonor Garcia, James Hanley Clark, Karen Wilson
  • Patent number: D657644
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: April 17, 2012
    Assignee: Red Cup Living LLC
    Inventor: Michael Romley