Patents Represented by Attorney, Agent or Law Firm Charles E. Runyan
  • Patent number: 6476164
    Abstract: This description addresses a process for the preparation of polyolefins from one or more olefinic monomers comprising combining under polymerization conditions said olefins with the product of combining i) an organometallic catalyst compound and ii) a cocatalyst complex comprising a trialkylsilyl-substituted carbenium cation and a suitable noncoordinating or weakly coordinating anion. These complexes exhibit good solubility in aliphatic solvents such that use in aliphatic solution based polymerization reaction processes can be conducted without the use of aromatic solvents or co-solvents and without the need for slurry means of introduction into chemical reaction environments. High number-average molecular weight polymers and copolymers at high rates of productivity were observed from the use of metallocene catalysts complexes when activated with [(3,5-Et3Si)2Ph)3C]+ [(C6F5) B]− and used in a hexane-based solution polymerization.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Francis C. Rix
  • Patent number: 6475946
    Abstract: This description addresses a process for the preparation of polyolefins from one or more olefinic monomers comprising combining under polymerization conditions said olefins with the product of combining i) an organometallic catalyst compound and ii) a cocatalyst complex comprising a trialkylsilyl-substituted carbenium cation and a suitable noncoordinating or weakly coordinating anion. These complexes exhibit good solubility in aliphatic solvents such that use in aliphatic solution based polymerization reaction processes can be conducted without the use of aromatic solvents or co-solvents and without the need for slurry means of introduction into chemical reaction environments. High number-average molecular weight polymers and copolymers at high rates of productivity were observed from the use of metallocene catalysts complexes when activated with [(3,5-(Et3Si)2Ph)3C]+[(C6F5)B]− and used in a hexane-based solution polymerization.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Francis C. Rix
  • Patent number: 6462131
    Abstract: Compatibilized blends of an isobutylene polymer and an unsaturated diene polymer are prepared by utilizing a compatibilizing agent comprising a block/graft copolymer containing polyisobutylene segments and C4 to C6 alkyl-substituted styrene polymer segments, such as poly(t-butylstyrene) segments.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: October 8, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mun Fu Tse, Hsien Chang Wang, Ramanan Krishnamoorti, Andy H. Tsou
  • Patent number: 6455652
    Abstract: This invention relates to novel resins, blends of the novel resins with base polymers and a process for producing a resin comprising combining a reactor feed blend comprising: (a) at least 2 weight % of isoprene, (b) at least 2 weight % of one or more of dicyclopentadiene, substituted cyclopentadienes and substituted dicyclopentadienes, (c) at least 2 weight % piperylene, (d) at least 1 weight % aromatic olefins, and (e) 0 to 92 weight % of additional aliphatic olefins, based upon the weight of the reactor feed blend, with a polymerization catalyst under polymerization conditions, preferably where the ratio of component (c) to component (b) is less than 8 and the ratio of component (a) to component (b) is less than 5.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: September 24, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anne Vera Macedo, Martijn Hendrik Willem Burgers, Leonor Ma Garcia, Lutz Erich Jacob, Jozef Aleida Florent Smits, R. Derric Lowery, Jerry Lee Haluska, Charles L. Sims, Frank Carl Jagisch
  • Patent number: 6451938
    Abstract: The invention relates to a polymerization catalyst system comprising a catalytic complex formed by activating a transition metal compound which comprises a metal selected from group 3 through 10 of the periodic table, preferably from group 4, 5, or 6 of the periodic table, and a group 13, 15, or 16 heterocyclic fused cyclopentadienide ligand. In one embodiment the inventive transition metal compound is represented by the [L]mM[A]n(S)o wherein M is a transition metal selected from groups 3 through 10 of the periodic table, and at least one of L is group 13, 15, or 16 heterocyclic fused cyclopentadienide ligand. Also disclosed is a polymerization process utilizing the catalyst systems of the invention. Ethylene polymerizations or copolymerizations with dimethyl (&eegr;5-pentamethylcyclopentadienyl)(1-azaindenyl) zirconium and bis(5-methyl-cyclopenta[b]thiophene) zirconium dichloride, activated by tris(pentafluorophenyl) boron and methylalumoxane, respectively, are illustrated.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: September 17, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Richard Allen Fisher, Rolf Bodo Temme
  • Patent number: 6444302
    Abstract: The present invention relates to a cold-drawn breathable film formed from a blend of a soft polymer component and a hard polymer component. The soft polymer component (SPC) is a copolymer of a major olefinic monomer and a minor olefinic monomer. The major olefinic monomer is either ethylene or propylene and forms the majority of the SPC. Preferred films after cold-drawing exhibit a water vapor transmission rate (WVTR) of at least 100 g-mil/m2-day.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: September 3, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Srivatsan Watson Srinivas, Patrick Brant, Francois Henri Chambon, James Peter Stokes
  • Patent number: 6444773
    Abstract: A composition of matter comprising vinyl ended copolymer chains having a number average molecular weight (Mn) of about 1500 to 75,000, the number average molecular weight being determined by gel permeation chromatography (GPC) at 145° C.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: September 3, 2002
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventor: Eric J. Markel
  • Patent number: 6433104
    Abstract: This invention relates to an improved resin hydrotreating process which maintains resin softening point and aromaticity as well as catalyst lifetime. The process is particularly useful for hydrotreating resins containing one or more halogen residues. Pressures are maintained at 2000 psi or less. Color is substantially reduced while softening point is not decreased by more than 8° C.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: August 13, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anne Vera Macedo, Jerry Lee Haluska
  • Patent number: 6428901
    Abstract: Disclosed are compositions comprising: a) an ethylene polymer component having a melting temperature greater than or equal to about 75° C., an ethylene crystallinity level of 5 weight percent or more, and a narrow compositional distribution; and b) a propylene polymer component having a melt flow rate of 500 dg/min. or more at 230° C. and a melting temperature greater than or equal to about 125° C. Further disclosed are films and articles made thereof.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: August 6, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan K. Agarwal, Armenag H. Dekmezian
  • Patent number: 6423795
    Abstract: Described are certain tetramethylcyclopentadienyl titanium compounds, catalyst systems comprising such compounds and an activator, and to a process using such catalyst systems for the production of polyolefins, particularly ethylene-&agr;-olefin copolymers having a high molecular weight and high level of &agr;-olefin incorporation.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 23, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann Marie Canich, Howard William Turner, Gregory George Hlatky
  • Patent number: 6423793
    Abstract: A thermoplastic elastomer is provided comprising a branched olefin polymer having crystalline sidechains and an amorphous backbone wherein at least 90 mole percent of the sidechains are isotactic or syndiotactic polypropylene and at least 80 mole percent of the backbone is atactic polypropylene. Additionally, a process is provided for producing a thermoplastic elastomer composition comprising: a) contacting, in solution, at a temperature from about 90° C. to about 120° C., propylene monomers with a catalyst composition comprising a chiral, stereorigid transition metal catalyst compound capable of producing isotactic or syndiotactic polypropylene; b) copolymerizing the product of a) with propylene and, optionally, one or more copolymerizable monomers, in a polymerization reactor using an achiral transition metal catalyst capable of producing atactic polypropylene; and c) recovering a branched olefin polymer.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: July 23, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Weiqing Weng, Armen H. Dekmezian, Eric J. Markel, David L. Peters
  • Patent number: 6417281
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain; B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian limiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: July 9, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cesar A. Garcia-Franco, David J. Lohse, Robert A. Mendelson, Lewis J. Fetters, Scott T. Milner, Nikos Hadjichristidis, David W. Mead
  • Patent number: 6413900
    Abstract: Stabilized alumoxane solutions are provided as well as a method for producing such solutions. The method generally involves the use of metallocene catalyst component(s) that when mixed with alumoxane solutions reduce the tendency for such solutions to form gels.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: July 2, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Agapios Kyriacos Agapiou, Patrick Brant
  • Patent number: 6403773
    Abstract: A cationic Group 3 or Lanthanide metal complex for coordination polymerization of olefins is disclosed. The precursor metal complex is stabilized by a monoanionic bidentate ancillary ligand and two monoanionic ligands. The ancillary ligand and the transition metal form a metallocycle having at least five primary atoms, counting any &pgr;-bound cyclopentadienyl group in the metallocycle as two primary atoms. Olefin polymerization is exemplified.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: June 11, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Joseph N Christopher, Kevin R. Squire, Jo Ann M. Canich, Timothy D. Shaffer
  • Patent number: 6403743
    Abstract: Petroleum resins are produced by using a supported halide based Lewis acid polymerization catalyst wherein the Lewis acid is chemically bound to the support and free hydrogen halide and/or alkane formed by the reaction of the Lewis acid with the support has been removed. The more active catalysts are useful with both pure monomer and mixed feeds.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: June 11, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James Hanley Clark, Kenneth Lewtas, Jennifer Katie Shorrock, Maria Leonor Garcia, Karen Wilson, Janet Chisem
  • Patent number: 6384158
    Abstract: The catalyst system of the invention comprises: I) a catalyst for polymerizing olefins comprising: a) a first component comprising at least one transition metal of Group IV, V or VI and at least two cyclopentadienyl containing rings, said rings each having at least two substituents bonded to each of said rings in the same position; b) a second component comprising said transition metal and said cyclopentadienyl containing rings, said rings each having at least two substituents bonded to each of said rings in the same or different position than said substituents of said first component; said substituents of the said first and second components can be the same or different, with the provision that when the substituents of said first and second components are the same, said substituents of said components are bonded to said rings in different positions; and c) a third component comprising said transition metal bonded to said cyclopentadienyl containing rings where one of said rings is substituted identically
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: May 7, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Lee Bamberger, Moses Olukayode Jejelowo
  • Patent number: 6362294
    Abstract: This invention is directed to reduced oxidation state Group 4-6 metal compounds, preferably the first row metals in those groups, suitable for activation as polymerization catalysts and characterized by comprising a substituted hydrotris(pyrazolyl)borate ancillary ligand and a plurality of single or multidentate uninegative ligands, excluding cyclopentadienyl ligands. The invention includes a polymerization process characterized by comprising contacting one or more monomers polymerizable by coordination or insertion polymerization under suitable polymerization conditions with these catalyst compositions.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: March 26, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Phillip T. Matsunaga, Rinaldo S. Schiffino
  • Patent number: 6355592
    Abstract: A catalyst system comprising a Group 4 transition metal cation having bonded thereto (1) a single cyclopentadienyl ligand or polycyclic derivative thereof, (2) a Group 15 or 16 heteroatom ligand, said single cyclopentadienyl ligand or polycyclic derivative and said heteroatom ligand being covalently bound and bridged to each other, and (3) at least one other ligand selected from the group consisting of hydride, hydrocarbyl, substituted hydrocarbyl, and hydrocarbyl substituted organonometalloid radicals; (b) a compatible non-coordinating anion; (c) a Group 13 element, hydrolyzable Lewis acid compound. The catalyst system is useful for polymerizing olefins, diolefins, cyclic olefins or acetylenically unsaturated monomers, either alone or in combination with each other or with other polymerizable monomers.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Gregory George Hlatky, Howard William Turner, Jo Ann Marie Canich
  • Patent number: 6355757
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain, B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian limiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Cesar A. Garcia-Franco, David J. Lohse, Robert A. Mendelson, Lewis J. Fetters, Scott T. Milner, Nikos Hadjichristidis, David W. Mead
  • Patent number: 6346636
    Abstract: This description addresses ionic compositions of matter comprising positively charged cations [Ct]+ and negatively charged anions [A]−, said anion comprising a central core Group 13 element to which are bound fluoroaryl ligands, at least one of said fluoroaryl ligands being substituted with a siloxy group represented by the symbols—SiOR3, wherein R is a C1-C30 hydrocarbyl or hydrocarbylsilyl substituent. [Ct]+ may be selected from any capable of use with olefin polymerization catalysts and typically will be from the group consisting of anilinium and ammonium cations, trityl carbenium cations, Group 11 metal cations, silylium cations, the cations of the hydrated salts of Group 1 or 2 metals, and derivatives of the foregoing anilinium, ammonium, trityl carbenium, and silylium cations containing C1-C20 hydrocarbyl, hydrocarbylsilyl, or hydrocarbylamine substituents for one or more hydrogen atoms of said cations.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: February 12, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventor: George Rodriguez