Patents Represented by Attorney Charles W. Stewart
  • Patent number: 8323395
    Abstract: The present invention provides a sulphur cement pre-composition, comprising sulphur and at least an organotitanate, which organotitanate is of the general molecular formula (1): wherein R1 is CnH(2n)—SaR4 or CmH(2m+1) and n is an integer in the range of from 1 to 4, m is an integer in the range of from 1 to 30 and a is an integer in the range of from 2 to 8, R4 is S, H, or CpH(2p+1) and p is an integer in the range of from 1 to 8, XO is an alkoxy or neoalkoxy group, R2 and R3 are, independently, a CnH(2n)—SaR4, alkyl, neoalkyl, acyl or aryl group. The invention further provides a process for preparing such sulphur cement pre-composition, processes for the preparation of a sulphur cement product, a sulphur cement product and the use of such sulphur cement pre-composition. The invention even further relates to the use of an organotitanate stabilizing agent.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 4, 2012
    Assignee: Shell Oil Company
    Inventors: Guy Lode Magda Maria Verbist, Rob Aloysius Maria Van Trier, Michael David Lankshear
  • Patent number: 8309777
    Abstract: An aromatics hydrogenation catalyst composition which comprises a noble metal component and a support comprising zirconia, silica, and, optionally, alumina. The catalyst composition is manufactured by co-mulling silica, a zirconium compound, and, optionally, alumina to form a mixture that is formed into a shape, such as by extrusion to form an extrudate, with the shape being calcined and noble metal being incorporated into the shape. The catalyst composition may be used in the saturation of aromatic compounds.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 13, 2012
    Assignee: Shell Oil Company
    Inventors: John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Patent number: 8287613
    Abstract: Gas-solids separator comprises a tubular housing, an inlet for introducing a gas-solids mixture at one end of said housing, which inlet is executed such that it imparts a swirl to the gas-solids mixture, a solids outlet opening at the opposite end of said housing, and a co-axially positioned tubular gas outlet conduit placed at an end of said housing, which separator further comprises a vortex stabilizer, comprising a pin placed on a stabilizing plate, in which separator the pin runs along the axis of the tubular housing and in which a passageway is provided through the stabilizer plate and the pin.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 16, 2012
    Assignee: Shell Oil Company
    Inventors: Ye-Mon Chen, Hubertus Wilhelmus Albertus Dries, Kee-Khoon Foo
  • Patent number: 8278241
    Abstract: Described is a novel amorphous silica-alumina composition having a high ratio of pore volume contained in large pores to pore volume contained in medium to small pores. The amorphous silica-alumina composition also may have the characteristic of a strong aluminum-NMR penta-coordinated peak representing greater than 30% of the total aluminum and a method of making such novel amorphous silica-alumina composition using a pH swing preparation method.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 2, 2012
    Assignee: Shell Oil Company
    Inventors: Russell Craig Ackerman, Christian Gabriel Michel, John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Patent number: 8262905
    Abstract: A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, John Anthony Smegal
  • Patent number: 8258193
    Abstract: The invention provides a process for removal of HCN and NH3 from synthesis gas, the process comprising the steps of: (a) contacting feed synthesis gas comprising HCN with a HCN hydrolysis sorbent in the presence of water, thereby obtaining synthesis gas comprising NH3; (b) contacting the synthesis gas comprising NH3 with an acidic cation exchange resin in the presence of water to remove NH3, thereby obtaining purified synthesis gas.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: September 4, 2012
    Assignee: Shell Oil Company
    Inventors: Rudolf Henri Max Herold, Thijme Last, Cornelis Jacobus Smit
  • Patent number: 8252222
    Abstract: The present invention provides a mold for shaping a sulphur cement product, which mold has an inner surface describing an inner volume for receiving a cast material, an outer surface and a barrier comprised between the inner surface and the outer surface, which barrier has a thermal conductance per unit area of at most 100 W/m2K in a direction perpendicular to the inner surface. The invention further provides a process for shaping a sulphur cement product.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 28, 2012
    Assignee: Shell Oil Company
    Inventors: Gary Jozef Alma Biebaut, Jochem Okke Boer, Luc Glas, Margreet Mauer, Luuk Van Rees, Guy lode Magda Maria Verbist
  • Patent number: 8252255
    Abstract: The invention provides a process for producing purified synthesis gas from synthesis gas comprising sulphur contaminants in the ppmv range, the process comprising the step of: (a) contacting the synthesis gas comprising sulphur contaminants with solid sorbent comprising a metal organic framework, thereby separating sulphur contaminants from the synthesis gas to obtain purified synthesis gas.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 28, 2012
    Assignee: Shell Oil Company
    Inventors: Roberto Andres Estaba Sambrano, Renze Wijntje
  • Patent number: 8246812
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 21, 2012
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 8241583
    Abstract: A process for cracking a hydrocarbon feed in a reactor assembly comprising: a reactor vessel; a solid catalyst inlet by which catalyst is introduced and a solid catalyst outlet by which catalyst is removed from the reactor vessel; a plurality of feed nozzles by which feed is introduced at the bottom of the vessel; a product outlet for removing a product mixture of gas and solid catalyst at the upper part of the reactor; at least one partition plate, that divides the interior of the reactor vessel into two or more compartments, wherein the partition plate intersects the solid catalyst inlet.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: August 14, 2012
    Assignee: Shell Oil Company
    Inventors: Hubertus Wilhelmus Albertus Dries, Rene Samson
  • Patent number: 8242063
    Abstract: A lubricating grease composition comprising base oil and a blended thickener which comprises, as the thickener constituents, (a) one or more urea-type compounds; (b) one or more fatty acid metal salts; and (c) at least one type of amide compound selected from the group comprised of aliphatic amides and aliphatic bisamides shown by the general formulae (1) and (2): R1CONH2??(1) R1CONHR2NHCOR1??(2) wherein R1 denotes a saturated or unsaturated alkyl group having from 15 to 17 carbon atoms and R2 denotes a methylene group or an ethylene group and wherein the blending weight proportions of (a), (b) and (c) are in the ratio of a/(b+c) is in the range of from 0.20 to 10 wherein (1) constituent (a) has a blending weight ratio in the range of from 1 to 10; (2) constituent (b) has a blending weight ratio in the range of from 0.5 to 2.5; and (3) constituent (c) has a blending weight ratio in the range of from 0.5 to 2.5.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: August 14, 2012
    Assignee: Shell Oil Company
    Inventors: Yasushi Kawamura, Toshiki Satou, Keiji Tanaka
  • Patent number: 8187365
    Abstract: The invention provides a process for removal of metal carbonyls from a synthesis gas stream comprising metal carbonyls, the process comprising the steps of: (a) adsorption of metal carbonyls by contacting the synthesis gas stream with solid adsorbent comprising activated carbon and/or hydrophobic zeolite to obtain solid adsorbent enriched in metal carbonyls and a synthesis gas stream depleted of metal carbonyls; (b) desorption of metal carbonyls by contacting the solid adsorbent enriched in metal carbonyls with CO-containing gas comprising at least 0.5 volume % CO to obtain regenerated adsorbent depleted of metal carbonyls and CO-containing gas enriched in metal carbonyls, wherein the temperature at which metal carbonyl desorption takes place is higher than the temperature at which metal carbonyl adsorption takes place.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: May 29, 2012
    Assignee: Shell Oil Company
    Inventor: Adriaan Johannes Kodde
  • Patent number: 8168557
    Abstract: A method of restoring catalytic activity to a spent hydroprocessing catalyst that has a first carbon concentration. The concentration of carbon on the spent hydroprocessing catalyst is reduced to provide a carbon-reduced catalyst having a second carbon concentration that is less than the first carbon concentration. The carbon-reduced catalyst is exposed to a solution, comprising a chelating agent and a solvent, for an aging time period sufficient to provide for a restored catalytic activity thereby resulting in an aged catalyst having incorporated therein the chelating agent and the solvent. The aged catalyst is exposed to conditions, including a drying temperature, so as to remove from the aged catalyst a portion of the solvent without removing a significant portion of the chelating agent from the aged catalyst thereby resulting in a dried aged catalyst. The dried aged catalyst is then sulfur treated to thereby provide a restored catalyst.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, James Dallas Seamans, Kenneth Scott Lee
  • Patent number: 8167976
    Abstract: A gas separation membrane system and a method of preparing such gas separation membrane system by providing a porous support upon which is supported a membrane layer comprising a first gas-selective material and having a membrane thickness and removing therefrom a substantial portion of the first gas-selective material from the membrane layer by the use of an ultra-fine abrasive to thereby provide the membrane layer having a reduced membrane thickness. A second gas-selective material is deposited upon the membrane layer having the reduced membrane thickness to provide an overlayer of the second gas-selective material having an overlayer thickness so as to thereby provide the gas separation membrane system having the membrane layer of the reduced membrane thickness and the overlayer of the overlayer thickness.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Alan Anthony Del Paggio, John Charles Saukaitis
  • Patent number: 8142748
    Abstract: Disclosed is a composition useful in the hydrolysis of sulfur compounds that are contained in a gas stream. The composition comprises alumina, a group VI metal component and a group VIII metal component. The composition has a pore structure such that a large percentage of its total pore volume is contained within the pores having a pore diameter greater than 10,000 angstroms.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 27, 2012
    Assignee: Shell Oil Company
    Inventor: Stephen Neil Massie
  • Patent number: 8137456
    Abstract: The present invention provides a process for the preparation of sulphur cement or a sulphur cement-aggregate composite comprising the following steps: (a) admixing at least an inorganic filler and/or aggregate and a polysulphide-containing organosilane having at least two organosilyl groups and allowing the organosilane to react with the inorganic filler and/or aggregate; (b) admixing during or after step (a) elemental sulphur with the inorganic filler and/or aggregate at a temperature at which sulphur is liquid to obtain an admixture comprising molten sulphur and inorganic filler and/or aggregate; and (c) solidifying the admixture to obtain sulphur cement or a sulphur cement-aggregate composite. The invention further provides sulphur cement or a sulphur cement-aggregate composite obtainable by such process and the use of a polysulphide-containing organosilane having at least two organosilyl groups as coupling agent in sulphur cement or a sulphur cement-aggregate composite.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: March 20, 2012
    Assignee: Shell Oil Company
    Inventors: Rob Aloysius Maria Van Trier, Guy Lode Magda Maria Verbist
  • Patent number: 8133316
    Abstract: A process for preparing an asphalt mixture from recycled asphalt pavement (RAP), virgin aggregate, filler and first and second binder materials, is disclosed. The process comprises steps of transporting RAP through a first drum; transporting virgin aggregate through a second drum; adding a first binder material to the RAP in the first drum to provide treated RAP; supplying the treated RAP, the virgin aggregate, filler and a second binder material to a mixing zone; and mixing to provide the asphalt mixture.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 13, 2012
    Assignee: Shell Oil Company
    Inventors: Karel Poncelet, Gerrit Gijsbertus Van Bochove
  • Patent number: 8123946
    Abstract: The invention provides a method for removal of metal sulphide particles from a liquid stream comprising a solvent and metal sulphide particles, using a filter system comprising at least one membrane, the method comprising contacting the liquid stream with the membrane, thereby transferring metal sulphide particles from the liquid stream onto the membrane surface to obtain a liquid stream depleted of metal sulphide particles and a filter system comprising a membrane enriched in metal sulphide particles.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Shell Oil Company
    Inventors: Johannes Leendert Willem Cornelis Den Boestert, Arian Nijmeijer, Wim M Bond, Hubert Willem Schenck
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8083933
    Abstract: A process for removing organic sulfur from a fuel gas stream that further contains light olefins by catalytic hydrodesulfurization to yield a treated fuel gas having an very low concentration of organic sulfur. The effluent of the catalytic hydrodesulfurization reactor may be cooled with a portion thereof being recycled and introduced along with the fuel gas stream that is charged to the hydrodesulfurization reactor. The remaining, unrecycled portion of the effluent may further be treated to remove the hydrogen sulfide that is yielded from by the hydrodesulfurization of the fuel gas stream.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 27, 2011
    Assignee: Shell Oil Company
    Inventor: Gary Lee Ripperger