Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human resistin and human syntaxin binding protein 2, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human resistin and human syntaxin binding protein 2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to an isolated genomic polynucleotide fragment that encodes human soluble (cytosolic) aminopeptidase P, vectors and hosts containing the fragment and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human soluble aminopeptidase P and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The present invention relates to therapeutic and prophylactic methods for treating or preventing an infectious disease in a subject by stimulating or enhancing an immune response against an infectious agent causing the disease. The methods comprise administering to the subject a plurality of compositions, each composition being administered to a different site of the subject, wherein each site is, or substantially drains to, an anatomically distinct lymph node, a group of lymph nodes, a nonencapsulated cluster of lymphoid tissue, or the spleen. Each composition comprises at least one antigenic molecule having one or more epitopes of the same infectious agent or a strain thereof. The antigenic molecules of each composition comprise in aggregate a set of epitopes distinct from that of any other composition that is administered to the subject.
Type:
Grant
Filed:
April 29, 2005
Date of Patent:
February 7, 2012
Assignee:
Polytopas LLC
Inventors:
Michael W. Deem, Jeong-Man Park, Hao Zhou
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human resistin and human syntaxin binding protein 2, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human resistin and human syntaxin binding protein 2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to an isolated genomic nucleic acid molecule fragment that encodes human RhoC, vectors and hosts containing the fragment and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human RhoC and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human resistin and human syntaxin binding protein 2, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human resistin and human syntaxin binding protein 2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase D, vectors and hosts containing the fragment and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human Carboxypeptidase D and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to an isolated genomic polynucleotide fragment that encodes human soluble (cytosolic) aminopeptidase P, vectors and hosts containing the fragment and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human soluble aminopeptidase P and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to 1-nitroacridine derivative(s)/tumor inhibitor(s) compositions as well as methods for using said compositions for inhibiting or preventing tumor growth, particularly, prostate cancer cell growth and metastases.
Type:
Grant
Filed:
February 16, 2001
Date of Patent:
November 24, 2009
Inventors:
Raj Tiwari, Daniel Miller, Jerzy Kazimierz Konopa, Barbara Wysocka-Skrzela
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract: The invention is directed to isolated genomic polynucleotide fragments that encode human resistin and human syntaxin binding protein 2, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human resistin and human syntaxin binding protein 2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.