Patents Represented by Attorney, Agent or Law Firm Daryl S. Grzybicki
  • Patent number: 5449251
    Abstract: A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary.
    Type: Grant
    Filed: May 4, 1993
    Date of Patent: September 12, 1995
    Assignee: The Regents of The University of California
    Inventors: William D. Daily, Abelardo L. Ramirez, Robin L. Newmark, Kent Udell, Harley M. Buetnner, Roger D. Aines
  • Patent number: 5434335
    Abstract: A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.
    Type: Grant
    Filed: June 23, 1993
    Date of Patent: July 18, 1995
    Assignee: The Regents of the University of California
    Inventors: William A. Brummond, Ravindra S. Upadhye, Cesar O. Pruneda
  • Patent number: 5416376
    Abstract: The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: May 16, 1995
    Assignee: The Regents of the University of California
    Inventors: Craig R. Wuest, Thomas M. Tillotson, Coleman V. Johnson, III
  • Patent number: 5409683
    Abstract: A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: April 25, 1995
    Assignee: Regents of the University of California
    Inventors: Thomas M. Tillotson, John F. Poco, Lawrence W. Hrubesh, Ian M. Thomas
  • Patent number: 5376355
    Abstract: Disclosed is a method of quantifying molecules in biological substances comprising:a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere,b. preparing a long-lived radioisotope labeled reactive chemical specie,c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof,d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host,e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources,f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and,g.
    Type: Grant
    Filed: April 26, 1991
    Date of Patent: December 27, 1994
    Assignee: The Regents of the University of California
    Inventors: Kenneth W. Turteltaub, John S. Vogel, James S. Felton, Barton L. Gledhill, Jay C. Davis
  • Patent number: 5366721
    Abstract: Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising:a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere,b. preparing a long-lived radioisotope labeled reactive chemical specie,c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof,d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host,e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources,f.
    Type: Grant
    Filed: April 26, 1991
    Date of Patent: November 22, 1994
    Assignee: Regents of the University of California
    Inventors: Kenneth W. Turteltaub, John S. Vogel, James S. Felton, Barton L. Gledhill, Jay C. Davis
  • Patent number: 5360828
    Abstract: Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: November 1, 1994
    Assignee: Regents of the University of California
    Inventor: Robert L. Morrison
  • Patent number: 5352627
    Abstract: A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.
    Type: Grant
    Filed: May 10, 1993
    Date of Patent: October 4, 1994
    Inventor: Gregory A. Cooper
  • Patent number: 5286343
    Abstract: The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: February 15, 1994
    Assignee: Regents of the University of California
    Inventor: Wing C. Hui
  • Patent number: 5275796
    Abstract: A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: January 4, 1994
    Assignee: Regents of the University of California
    Inventors: Thomas M. Tillotson, John F. Poco, Lawrence W. Hrubesh, Ian M. Thomas
  • Patent number: 5242647
    Abstract: The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: September 7, 1993
    Assignee: Regents of The University of California
    Inventor: John F. Poco
  • Patent number: 5209919
    Abstract: Disclosed is a method of quantifying molecules in biological substances, comprising:a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere,b. preparing a long-lived radioisotope labeled reactive chemical specie,c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof,d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host,e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources,f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and,g.
    Type: Grant
    Filed: April 26, 1991
    Date of Patent: May 11, 1993
    Assignee: Regents of the University of California
    Inventors: Kenneth W. Turteltaub, John S. Vogel, James S. Felton, Barton L. Gledhill, Jay C. Davis, Larry H. Stanker
  • Patent number: 5183119
    Abstract: An anti-snag plowing system suitable for clearing mines in the Middle East is disclosed. Advantageously, the plowing system has also been found to be an efficient and effective soil conditioner, making it a useful farming tool as well. The plowing system comprises several digging-knife units, or plows, and a harrow. Both are attached in tandem to a chain matrix, which is pulled with either a helicopter or tractor. The digging-knife units rotate if the digging-knives hit an immovable snag. The harrow is covered with a chain blanket, and may have magnetic or sonic wave mine triggers if the system is used for clearing mines. A symmetrical embodiment is also disclosed.
    Type: Grant
    Filed: June 14, 1991
    Date of Patent: February 2, 1993
    Assignee: Regents of the University of California
    Inventor: Willard H. Wattenburg