Patents Represented by Attorney Donald A. Nissen
  • Patent number: 7781111
    Abstract: A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H2/O2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from 63Ni are used to release hydrogen from linear polyethylene.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 24, 2010
    Assignee: Sandia Corporation
    Inventors: Paul M. Dentinger, Jeffrey A. W. Crowell
  • Patent number: 7488407
    Abstract: A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: February 10, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, Leroy Whinnery, Jr., William R. Even, Jr.
  • Patent number: 7485277
    Abstract: A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200° C., or prolonged exposure to temperatures in the range of 100-300° C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 3, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, George M. Buffleben
  • Patent number: 7449579
    Abstract: A “real time” method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: November 11, 2008
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 7422701
    Abstract: A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200° C., or prolonged exposure to temperatures in the range of 100-300° C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: September 9, 2008
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, George M. Buffleben
  • Patent number: 7358221
    Abstract: A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: April 15, 2008
    Assignee: Sandia Corporation
    Inventors: Gregory M. Jamison, David R. Wheeler, Douglas A. Loy, Blake A. Simmons, Timothy M. Long, James R. McElhanon, Kamyar Rahimian, Chad L. Staiger
  • Patent number: 7297246
    Abstract: A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: November 20, 2007
    Assignee: Sandia Corporation
    Inventor: Kamlesh D. Patel
  • Patent number: 7225683
    Abstract: A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 ?L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: June 5, 2007
    Assignee: Sandia National Laboratories
    Inventors: Cindy K. Harnett, Robert W. Crocker, Bruce P. Mosier, Pamela F. Caton, James F. Stamps
  • Patent number: 7213473
    Abstract: An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1–100 ?L/min into microsystem load pressures of up to 1000–50 psi, respectively. Flowrates can be specified within 0.5 ?L/min and volumes as small as 80 nL can be metered.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: May 8, 2007
    Assignee: Sandia National Laboratories
    Inventors: Bruce P. Mosier, Robert W. Crocker, Kamlesh D. Patel, Cindy K. Harnett
  • Patent number: 7186987
    Abstract: A ?-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The ?-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are ?-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (?109 ohm·cm), these ?-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the ?-conjugated polymer material to measure electron/hole pair formation. A layer of the ?-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: March 6, 2007
    Assignee: Sandia National Laboratories
    Inventors: F. Patrick Doty, Douglas A. Chinn
  • Patent number: 7162864
    Abstract: A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: January 16, 2007
    Assignee: Sandia National Laboratories
    Inventors: Robert W. Schefer, Jay O Keller
  • Patent number: 7128559
    Abstract: A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an “up” or actuated configuration. This arrangement of “up” and “down” plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: October 31, 2006
    Assignee: Sandia National Laboratories
    Inventors: Gregory F. Cardinale, Albert A. Talin
  • Patent number: 7128046
    Abstract: A method for slowing the heat-release rate in homogeneous charge compression ignition (“HCCI”) engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 31, 2006
    Assignee: Sandia National Laboratories
    Inventors: John E. Dec, Carl-Magnus G. Sjöberg
  • Patent number: 7094326
    Abstract: An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: August 22, 2006
    Assignee: Sandia National Laboratories
    Inventors: Robert W. Crocker, Cindy K. Harnett, Judith L. Rognlien
  • Patent number: 7052608
    Abstract: A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Sandia National Laboratories
    Inventors: Timothy J. Shepodd, Elizabeth Franklin, Zane T. Prickett, Alexander Artau
  • Patent number: 7022381
    Abstract: A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G? and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: April 4, 2006
    Assignee: Sandia National Laboratories
    Inventors: Brian J. Kirby, David S. Reichmuth, Timothy J. Shepodd
  • Patent number: 6998598
    Abstract: A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: February 14, 2006
    Assignee: Sandia National Labroatories
    Inventors: Brent A. Horn, Ronald F. Renzi
  • Patent number: 6994826
    Abstract: A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: February 7, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Phillip H. Paul, Don W. Arnold
  • Patent number: 6988402
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6969576
    Abstract: A photoresist composition that employs onium salt carboxylates as thermally stable dissolution inhibitors. The photoresist composition can be either an onium carboxylate salt with a phenolic photoresist, such as novolac, or an onium cation protected carboxylate-containing resin such as an acrylic/acrylic acid copolymer. The onium carboxylate can be an onium cholate, wherein the onium cholate is an iodonium cholate. Particularly preferred iodonium cholates are alkyloxyphenylphenyl iodonium cholates and most particularly preferred is octyloxyphenyphenyl iodonium cholate. The photoresist composition will not create nitrogen or other gaseous byproducts upon exposure to radiation, does not require water for photoactivation, has acceptable UV radiation transmission characteristics, and is thermally stable at temperatures required for solvent removal.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: November 29, 2005
    Assignee: Sandia National Laboratories
    Inventors: Paul M. Dentinger, Kelby L. Simison