Patents Represented by Attorney, Agent or Law Firm Frank S. Molinaro
  • Patent number: 6359179
    Abstract: A process for the direct carbonylation of saturated hydrocarbons has been developed. The process involves contacting the saturated hydrocarbons, which contain at least one primary, secondary or tertiary carbon atom, with carbon monoxide in the presence of a solid strong acid catalyst to produce an oxygenated saturated hydrocarbon. In a specific embodiment isobutane is reacted with carbon monoxide using sulfated zirconia as the catalyst to produce methylisopropyl ketone. The oxygenated hydrocarbon can subsequently be hydrogenated to give a reduced oxygenated saturated hydrocarbon. The hydrogenation can also be done simultaneously with the carbonylation, i.e., reductive carbonylation.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: March 19, 2002
    Assignee: UOP LLC
    Inventors: Laszlo T. Nemeth, Jeffrey C. Bricker, Jules Rabo, Ralph D. Gillespie
  • Patent number: 6346194
    Abstract: A chromatographic process for separating racemic mixtures using a set of chiral stationary phases based on yohimbine and its derivatives has been developed. In particular, the hydroxyl functionality of yohimbine and its analogs is covalently bonded via a urethane linkage to a polymethylenesilyl chain attached to the bound hydroxyl groups of a refractory inorganic oxide by Si—O bonds. The resulting chiral stationary phases have multiple chiral recognition sites and can be used with a broad spectrum of materials as eluents without leaching.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: February 12, 2002
    Assignee: UOP LLC
    Inventor: David W. House
  • Patent number: 6344583
    Abstract: Applicants have developed a process for the oxidation of ketones to esters. The process involves contacting the ketone with hydrogen peroxide and a catalyst at oxidation conditions. The catalyst is a molecular sieve represented by the empirical formula: (MwSnxTiySi1−x−y−zGez)O2 where M is a trivalent metal such as aluminum or boron. These molecular sieves have a microporous three dimensional framework structure of at least SiO2 and SnO2 tetrahedral units, a crystallographically regular pore system and the characteristic x-ray diffraction pattern of zeolite beta.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: February 5, 2002
    Assignee: UOP LLC
    Inventors: Avelino Corma Canos, Laszlo T. Nemeth, Michael Renz, Jaime G. Moscoso
  • Patent number: 6342185
    Abstract: A reactor for conducting catalytic chemical reactions has been developed. The reactor has a well having an open end and a closed end. The reactor also has a sleeve having a top end and a bottom end. The bottom end of the sleeve is inserted within the open end of the well. A fluid permeable structure is attached to the sleeve spanning the cross-section thereby defining a chamber between the closed end of the well and the fluid permeable structure. The reactor also has a reactor insert having a fluid permeable end and a top end containing a first and a second fluid conduit. The fluid permeable end of the reactor is inserted within the open end of the sleeve. The first fluid conduit is in fluid communication with the chamber, and the second fluid conduit is in fluid communication with the fluid permeable end of the reactor insert.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: January 29, 2002
    Assignee: UOP LLC
    Inventors: Ivar M. Dahl, Arne Karlsson, Duncan E. Akporiaye, Kurt M. Vanden Bussche, Gavin P. Towler
  • Patent number: 6342462
    Abstract: A novel process for the regeneration of a solid adsorbent which is at least partially spent and has a reactive metal (e.g. silver) dispersed thereon is disclosed. The regeneration consists of a step whereby accumulated metal-containing reaction products formed during adsorptive service are removed by stripping the spent or partially spent adsorbent with a suitable stripping solution such as sodium thiosulfate. After detrimental metal-containing deposits are stripped, the adsorbent is then subjected to a reactivation step in which the regenerated adsorbent is contacted with a solution containing a reactive metal compound (e.g. silver nitrate). Reactivating the adsorbent therefore adds an incremental amount of the reactive metal onto the adsorbent. Regeneration of the adsorbent according to the two-step method of the present invention thus effectively prolongs its useful life.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: January 29, 2002
    Assignee: UOP LLC
    Inventor: Santi Kulprathipanja
  • Patent number: 6342197
    Abstract: The present invention relates to an improvement of integrated fuel processor and fuel cell systems which improves stability of operation, simplifies control, and improves the heat recovery. According to the invention, a reforming zone is heated by indirect heat exchange with a first combustion effluent stream and provides a cooled first combustion effluent stream. The cooled combustion effluent stream is reheated in at least an additional combustion zone with at least a portion of the anode waste gas from the fuel cell to provide a reheated combustion effluent stream. The reheated combustion effluent stream is employed to further heat the reforming zone.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: January 29, 2002
    Assignee: UOP LLC
    Inventors: John J. Senetar, Gavin P. Towler, John R. Harness
  • Patent number: 6340432
    Abstract: A chromatographic process for separating racemic mixtures using a set of chiral stationary phases based on yohimbine and its derivatives has been developed. In particular, the hydroxyl functionality of yohimbine and its analogs is covalently bonded via a urethane linkage to a polymethylenesilyl chain attached to the bound hydroxyl groups of a refractory inorganic oxide by Si—O bonds. The resulting chiral stationary phases have multiple chiral recognition sites and can be used with a broad spectrum of materials as eluents without leaching.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: January 22, 2002
    Assignee: UOP LLC
    Inventor: David W. House
  • Patent number: 6338792
    Abstract: A novel liquid collector assembly has been developed for a reactor used in the sweetening of sour hydrocarbons (e.g. sour gasoline). This refinery process normally involves contacting a reaction liquid, comprising both aqueous (caustic solution) and organic (hydrocarbon) phases, with a fixed bed of oxidation catalyst. The collector assembly design, comprising a piping manifold and a plurality of dependent, vertically aligned, and perforated conduits, allows for improved separation of the reaction products into essentially pure treated hydrocarbon and spent alkaline reagent streams. If sodium hydroxide is used as caustic solution, for example, the treated hydrocarbon product will normally contain less than 1 ppm by weight of sodium.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: January 15, 2002
    Assignee: UOP LLC
    Inventor: Luigi Laricchia
  • Patent number: 6332985
    Abstract: A process for removing toxins from fluids, such as bodily fluids or a dialysate solution, is disclosed. The process involves contacting the fluid with a microporous ion exchanger to remove toxins in the fluid.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: December 25, 2001
    Assignee: UOP LLC
    Inventors: John D. Sherman, David S. Bem, Gregory J. Lewis
  • Patent number: 6327334
    Abstract: A method for rapidly screening multiple X-ray powder diffraction patterns, such as those generated through combinatorial chemistry, has been developed. The method is directed toward measuring X-ray powder diffraction patterns of a set of samples, factoring the patterns using a suitable statistical technique into a small number of discrete components or factors, determining the scores corresponding to the factors for each X-ray powder diffraction pattern, and plotting the scores. The graphs of the scores are then inspected for clusters, trends, or outliers, which may represent new material or, perhaps, faulty data.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: December 4, 2001
    Assignee: UOP LLC
    Inventors: Richard C. Murray, Jr., Cheryl M. Bratu, Gregory J. Lewis
  • Patent number: 6306288
    Abstract: A process for removing H2S and mercaptans from a hydrocarbon stream is disclosed. A hydrocarbon stream such as a LPG stream is contacted with a weakly basic stream, e.g., a sodium bicarbonate stream in order to extract the H2S and mercaptans from the hydrocarbon stream into the basic stream. The basic stream is now treated in a reactor containing a sulfide oxidizing microorganism in order to convert the H2S to sulfur and the mercaptans to disulfides. Finally, the sulfur and disulfides are separated from the basic aqueous stream which can be recycled and used to treat a fresh hydrocarbon stream. The treated hydrocarbon stream is purified to the point that it passes the copper strip test, while the purified basic stream contains less than 0.08 g/l of elemental sulfur.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: October 23, 2001
    Assignee: UOP LLC
    Inventors: Rusty Pittman, Blaise J. Arena, Albert J. Janssen
  • Patent number: 6306364
    Abstract: A new family of stannosilicate molecular sieves which have the zeolite beta structure are disclosed. These molecular sieves have a three dimensional framework structure composed of SnO2 and SiO2 tetrahedral oxide units and at least one of TiO2 or GeO2 tetrahedral oxide units and have an empirical formula of: (SnxTiySi1-x-y-zGez)2 where “x”, “y” and “z” are the mole fractions of tin, titanium and germanium respectively (“y” and “z” are not simultaneously zero). Processes for the selective oxidation of organic compounds with peroxides using the molecular sieves as catalysts is also presented.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: October 23, 2001
    Assignee: UOP LLC
    Inventors: Susana Valencia Valencia, Avelino Corma CanĂ³s
  • Patent number: 6303841
    Abstract: A process is provided for the concentration and recovery of ethylene and heavier components from an oxygenate conversion process. A separation process such as a pressure swing adsorption (PSA) process is used to remove hydrogen and methane from a demethanizer overhead stream comprising hydrogen, methane, and C2 hydrocarbons and subsequently return the recovered C2 hydrocarbons to be admixed with the effluent from the oxygenate conversion process. This integration of a separation zone with a fractionation scheme in an ethylene recovery scheme using an initial demethanizer zone resulted in significant capital and operating cost savings by the elimination of cryogenic ethylene-based refrigeration from the overall recovery scheme.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: October 16, 2001
    Assignee: UOP LLC
    Inventors: John J. Senetar, Lawrence W. Miller, Linda Shi Cheng, Mark M. Davis
  • Patent number: 6303839
    Abstract: The present invention relates to a process for the production of light olefins comprising olefins having from 2 to 4 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal aluminophosphate catalyst to produce a light olefin stream. A propylene stream and/or mixed butylene is fractionated from said light olefin stream and cracked to enhance the yield of ethylene and propylene products. This combination of light olefin product and propylene and butylene cracking in a riser cracking zone or a separate cracking zone provides flexibility to the process which overcomes the equilibrium limitations of the aluminophosphate catalyst. In addition, the invention provides the advantage of extended catalyst life and greater catalyst stability in the oxygenate conversion zone.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: October 16, 2001
    Assignee: UOP LLC
    Inventor: Terry L. Marker
  • Patent number: 6299995
    Abstract: Disclosed is a hydrogen generation process for use with fuel cells which includes a preferential oxidation step to reduce the concentration of carbon monoxide. The preferential oxidation step includes contacting a fuel stream comprising hydrogen and carbon monoxide in the presence of an oxygen at a preferential oxidation temperature of between about 70° and about 160° C. with preferential oxidation catalyst for reducing the concentration of carbon monoxide to produce a treated fuel gas stream comprising less than about 50 ppm-vol carbon monoxide. The preferential oxidation catalyst comprises ruthenium metal disposed on an alumina carrier having a low density and a high porosity. Superior performance at low preferential oxidation temperatures below 130° C. was observed when the alumina carrier contained a bimodal pore distribution with an average pore distribution of from about 20 to about 3000 angstroms.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: October 9, 2001
    Assignee: UOP LLC
    Inventors: Suheil F. Abdo, Cynthia A. DeBoy, Geralyn F. Schroeder
  • Patent number: 6296688
    Abstract: A vacuum swing adsorption process is provided for the separation of propylene from a feedstream comprising propylene and propane using an adsorbent comprising AlPO-14 to produce a high purity propylene product stream at high recovery. The vacuum swing adsorption process of the present invention can be employed in a variety of petroleum refining and petrochemical processes to purify and separate propylene from mixtures of propylene and propane alone or in combination with fractionation.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: October 2, 2001
    Assignee: UOP LLC
    Inventors: Linda S. Cheng, Stephen T. Wilson
  • Patent number: 6293999
    Abstract: A process is provided for the concentration and recovery of propylene from propane using an adsorbent comprising AlPO-14 at adsorption temperatures less than 120° C. and an adsorption pressure comprising a propylene partial pressure between about 0.5 bar and about 4 bar. The AlPO-14 adsorbent can be employed as a selective adsorbent for the separation of propylene from mixtures thereof with propane in vacuum swing adsorption processes, thermal swing adsorption processes, and combinations thereof. A simulated moving bed process using vacuum swing adsorption is used to remove propylene from a C3 hydrocarbon stream comprising propylene and propane and recover a high purity propylene product at a high recovery rate. The simulated moving bed vacuum swing adsorption process of the present invention can be employed in a variety of petroleum refining and petrochemical processes to purify and separate propylene from mixtures of propylene and propane alone or in combination with fractionation.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: September 25, 2001
    Assignee: UOP LLC
    Inventors: Linda S. Cheng, Stephen T. Wilson
  • Patent number: 6288281
    Abstract: A process for the carbonylation of saturated hydrocarbons to give an oxygenated saturated hydrocarbon is disclosed and claimed. The process involves using an acidic ionic liquid catalyst to catalyze the carbon monoxide addition to the saturated hydrocarbon at reaction conditions to form an oxygenate. The acidic ionic liquid comprises a Lewis or Bronsted acid in combination with a quaternary nitrogen-containing compound. A specific example is a mixture of aluminum chloride and n-butylpyridinium chloride.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: September 11, 2001
    Assignee: UOP LLC
    Inventors: Laszlo T. Nemeth, Jeffery C. Bricker, Jennifer S. Holmgren, Lyle E. Monson
  • Patent number: 6288178
    Abstract: In the operation of a gas phase polymerization reactor, a significant amount of production time and material can be lost during the transition from initial process conditions for the production of one product to the desired process conditions for the production of a second product. The present invention recognizes the synergy between the use of a membrane separation zone selective for the removal of hydrogen from the reactor effluent and the operation of the polymerization reactor during the transition period to significantly reduce the transition time and substantially reduce the production of off-specification product during the transition period.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: September 11, 2001
    Assignee: UOP LLC
    Inventor: Lance L. Jacobsen
  • Patent number: 6287365
    Abstract: A process is provided for the removal of trace amounts of aromatic hydrocarbons from an acid waste gas feed stream comprising sulfur compounds and the aromatic hydrocarbons. An adsorption process employing an adsorbent such as a high silica zeolite adsorbent having a framework silica-to-alumina ratio greater than about 15 and having a pore size greater than about 6.2 angstroms is used to remove from the feed gas mixture aromatic hydrocarbon contaminants and permit the recovery of a high purity sulfur product from the treated effluent stream. The use of the present invention removes aromatic hydrocarbon contaminants which are responsible for the degeneration of the performance of the downstream sulfur recovery zone.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: September 11, 2001
    Assignee: UOP LLC
    Inventors: John Markovs, Gordon T. Cartwright, Carmen M. Yon, Henry Rastelli