Patents Represented by Attorney Gregory R Muir
  • Patent number: 7027200
    Abstract: The present invention discloses a method and apparatus for removing the sacrificial materials in fabrications of microstructures using a vapor phase etchant recipe having a spontaneous vapor phase chemical etchant. The vapor phase etchant recipe has a mean-free-path corresponding to the minimum thickness of the sacrificial layers between the structural layers of the microstructure. This method is of particular importance in removing the sacrificial layers underneath the structural layers of the microstructure.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: April 11, 2006
    Assignee: Reflectivity, INC
    Inventors: Hongqin Shi, Gregory P. Schaadt, Andrew G. Huibers, Satyadev R. Patel
  • Patent number: 7027207
    Abstract: A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: April 11, 2006
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 7027205
    Abstract: Methods and apparatus for selectively updating memory cells of a memory cell array are provided. The memory cells of each row of the memory cell array are provided with a plurality of wordlines. Memory cells of the row are activated and updated by separated wordlines. In an application of display systems using memory cell arrays for controlling the pixels of the display system and pulse-width-modulation (PWM) technique for displaying grayscales, the pixels can be modulated by different PWM waveforms. The perceived dynamic-false-contouring artifacts are reduced thereby. In another application, the provision of multiple wordlines enables precise measurements of voltages maintained by memory cells of the memory cell array.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: April 11, 2006
    Assignee: Reflectivity, Inc
    Inventor: Peter W. Richards
  • Patent number: 7023606
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: April 4, 2006
    Assignee: Reflectivity, INC
    Inventor: Andrew G. Huibers
  • Patent number: 7023607
    Abstract: A spatial light modulator including first and second substrate, and an array of deflectable elements disposed within a gap between the first and second substrates is disclosed herein. For electrostatically actuating the deflectable elements, an array of electrodes and circuitry is provided and positioned proximate to the deflectable elements.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: April 4, 2006
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 7019376
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: March 28, 2006
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Andrew G. Huibers
  • Patent number: 7019880
    Abstract: The micromirror of the present invention comprises a mirror plate having thereon a cavity allowing deformation of a hinge attached to the mirror plate and deflection of the mirror plate in operation.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: March 28, 2006
    Assignee: Reflectivity, INC
    Inventors: Andrew Huibers, Satyadev Patel
  • Patent number: 7018052
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 28, 2006
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 7012733
    Abstract: A spatial light modulator including first and second substrate, and an array of deflectable elements disposed within a gap between the first and second substrates is disclosed herein. For electrostatically actuating the deflectable elements, an array of electrodes and circuitry is provided and positioned proximate to the deflectable elements.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: March 14, 2006
    Assignee: Reflectivity, INC
    Inventor: Andrew G. Huibers
  • Patent number: 7012592
    Abstract: A voltage storage cell circuit includes an access transistor and a storage capacitor, wherein the source of said access transistor is connected to a bitline, the gate of said access transistor is connected to a wordline, and wherein the drain of said access transistor is connected to a first plate of said storage capacitor forming a storage node, and wherein the second plate of said storage capacitor is connected to a pump signal. This arrangement allows for a novel pixel circuit design with area requirements comparable to that of a 1T1C DRAM-like pixel cell, but with the advantage of an output voltage swing of the full range allowed by the breakdown voltage of the pass transistor. A spatial light modulator such as a micromirror array can comprise such a voltage storage cell.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: March 14, 2006
    Assignee: Reflectivity, INC
    Inventor: Peter W. Richards
  • Patent number: 7012731
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 14, 2006
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 7009754
    Abstract: A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 7, 2006
    Assignee: Reflectivity, INC
    Inventor: Andrew G. Huibers
  • Patent number: 7006275
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: February 28, 2006
    Assignee: Reflectivity, INC
    Inventor: Andrew G. Huibers
  • Patent number: 7002727
    Abstract: A method for packaging micromirror array devices is disclosed herein. The method enhances illumination on micromirror array devices by applying a selected optical material between a package lid and glass substrate of the micromirror array device, the selected optical material having a refraction index that matches the refraction indices of the package lid and the glass substrate.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: February 21, 2006
    Assignee: Reflectivity, Inc.
    Inventor: Andrew G. Huibers
  • Patent number: 6999224
    Abstract: A method and apparatus are disclosed for increasing contrast in micromirror-based image display devices. As a result the displayed image is a more faithful reproduction of the original and is more pleasing to human perception than is possible with a low contrast display. The method and apparatus comprise a micromirror design and a modulation scheme for driving micromirrors with a combination of analog and digital techniques to achieve partial and full micromirror deflection. The analog techniques permit the mirrors to be deflected to positions intermediate between the resting position and the position of maximum deflection. These intermediate deflections appear as intermediate light levels in an image. Compared to digital modulation, the analog techniques provide an increase in the number of light levels that can be displayed by a system that is limited by its incoming data rate and maximum micromirror speed.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: February 14, 2006
    Assignee: Reflectivity, INC
    Inventor: Andrew Huibers
  • Patent number: 6995040
    Abstract: A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: February 7, 2006
    Assignee: Reflectivity, Inc
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Steve S. Chiang
  • Patent number: 6995034
    Abstract: A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: February 7, 2006
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Steve S. Chiang
  • Patent number: 6985277
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: January 10, 2006
    Assignee: Reflectivity, INC
    Inventors: Andrew Huibers, Satyadev Patel
  • Patent number: 6979893
    Abstract: The present invention provides a lubricant container inside a microelectromechanical device package. The lubricant container contains selected lubricant that evaporates from the container and contact to a surface of the microelectromechanical device for lubricating the surface.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: December 27, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jim Dunphy, Dmitri Simonian, John Porter
  • Patent number: 6980347
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: December 27, 2005
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Andrew G. Huibers