Patents Represented by Attorney Gregory R Muir
  • Patent number: 6980349
    Abstract: A spatial light modulator is disclosed, along with methods for making such a modulator. The spatial light modulator comprises an array of micromirrors each of which comprises a deflectable and reflective mirror plate. For enabling the deflection of the mirror plate, incisions are made within the area of the mirror plate with each incision being fully enclosed within the area of the mirror plate. The incisions collectively define a deformable hinge that is on the same plane as the mirror plate at the non-deflected state.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: December 27, 2005
    Inventors: Andrew Huibers, Satyadev Patel
  • Patent number: 6980197
    Abstract: An integrated driver for controlling operations of display systems having spatial light modulators that are operated in binary states is provided.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: December 27, 2005
    Assignee: Reflectivity, INC
    Inventor: Peter W. Richards
  • Patent number: 6975444
    Abstract: A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: December 13, 2005
    Assignee: Reflectivity, Inc.
    Inventor: Andrew G. Huibers
  • Patent number: 6974713
    Abstract: A micromirror device is disclosed, along with a method of making such a micromirror device that comprises a mirror plate, a hinge and an extension plate. The extension plate is formed on the mirror plate and between the mirror plate and the electrode associated with the mirror plate for rotating the mirror plate. The extension plate can be metallic or dielectric. Also disclosed is a method of making such a micromirror device. In particular, the extension plate is formed after the formation of the mirror plate. Moreover, also disclosed is a projection system that comprises a spatial light modulator having an array of such micromirrors, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: December 13, 2005
    Assignee: Reflectivity, Inc.
    Inventors: Sataydev Patel, Andrew Huibers
  • Patent number: 6972891
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 6, 2005
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Andrew G. Huibers
  • Patent number: 6970281
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: November 29, 2005
    Assignee: Reflectivity, Inc.
    Inventors: Andrew Huibers, Satyadev Patel
  • Patent number: 6969635
    Abstract: A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: November 29, 2005
    Assignee: Reflectivity, Inc.
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Steven S. Chiang
  • Patent number: 6970280
    Abstract: A micro-mirror that comprises a substrate, a hinge structure formed on the substrate and a mirror plate attached to the hinge structure is provided for use in display systems. The mirror plate is capable of rotating from a non-deflected resting state to a state that is at least 14° degrees. In operation, the micro-mirror switches between an “ON”-state and “OFF”-state, which are defined in accordance with a rotational position of the mirror plate. The OFF state can be a non-deflected position of the micro-mirror (generally parallel to the substrate), the same angle (though opposite direction) as the ON state, or an angle less than the ON state (though in the opposite direction). Reflected light from the “ON” and “OFF” states are thus separated and the contrast ratio is improved.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 29, 2005
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Peter J. Heureux
  • Patent number: 6965468
    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: November 15, 2005
    Assignee: Reflectivity, INC
    Inventors: Andrew Huibers, Satyadev Patel
  • Patent number: 6962419
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: November 8, 2005
    Assignee: Reflectivity, INC
    Inventor: Andrew G. Huibers
  • Patent number: 6960305
    Abstract: A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 1, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Andrew G. Huibers, Jason S. Reid
  • Patent number: 6958123
    Abstract: A method comprises depositing an organic material on a substrate; depositing additional material different from the organic material after depositing the organic material; and removing the organic material with a compressed fluid. Also disclosed is a method comprising: providing an organic layer on a substrate; after providing the organic layer, providing one or more layers of a material different than the organic material of the organic layer; removing the organic layer with a compressed fluid; and providing an anti-stiction agent with a compressed fluid to material remaining after removal of the organic layer.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: October 25, 2005
    Assignee: Reflectivity, INC
    Inventors: Jason S. Reid, Nungavaram S. Viswanathan
  • Patent number: 6958846
    Abstract: A projection system, a spatial light modulator, and a method for forming micromirrors are disclosed. A substrate comprises circuitry and electrodes for electrostatically deflecting micromirror elements that are disposed within an array of such elements forming the spatial light modulator. In one embodiment, the substrate is a silicon substrate having circuitry and electrodes thereon for electrostatically actuating adjacent micromirror elements, and the substrate is fully or selectively covered with a light absorbing material.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: October 25, 2005
    Assignee: Reflectivity, INC
    Inventors: Andrew G. Huibers, Peter W. Richards
  • Patent number: 6952301
    Abstract: A projection system, a spatial light modulator, and a method for forming a MEMS device are disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micro-mirror array. The two substrates can be bonded at the wafer level after depositing a getter material and/or solid or liquid lubricant on one or both of the wafers if desired. In one embodiment of the invention, one of the substrates is a light transmissive substrate and a light blocking layer that is preferably a light absorbing layer is provided on the light transmissive substrate to selectively block light from passing through the substrate. The light blocking layer can be formed as a pattern, such as a grid or strips for blocking light from entering gaps between adjacent micro-mirrors.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: October 4, 2005
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 6952302
    Abstract: A method and spatial light modulator are provided herein. The spatial light modulator has a higher resolution and an increased fill factor. The spatial light modulator also provides an increased contrast ratio. Furthermore, the spatial light modulator of the present invention can be operated in the absence of polarized light and that has improved electro-mechanical performance and robustness with respect to manufacturing. A method and its alternative are disclosed herein by the present invention for manufacturing the spatial light modulator.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: October 4, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Patent number: 6950217
    Abstract: A spatial light modulator having a photo-detector for use in digital display systems is provided. The spatial light modulator modulates a light beam having multiple light components of different frequencies so as to produce color images. The photo-detector detects a component of the light beam and generates a timing signal. The timing signal is then used to synchronize the operation of the spatial light modulator with the sequence of incident light color components.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: September 27, 2005
    Assignee: Reflectivity, Inc.
    Inventor: Peter Richards
  • Patent number: 6949202
    Abstract: Processes for the addition or removal of a layer or region from a workpiece material by contact with a process gas in the manufacture of a microstructure are enhanced by the use of recirculation of the process gas. Recirculation is effected by a pump that has no sliding or abrading parts that contact the process gas, nor any wet (such as oil) seals or purge gas in the pump. Improved processing can be achieved by a process chamber that contains a baffle, a perforated plate, or both, appropriately situated in the chamber to deflect the incoming process gas and distribute it over the workpiece surface. In certain embodiments, a diluent gas is added to the recirculation loop and continuously circulated therein, followed by the bleeding of the process gas (such as an etchant gas) into the recirculation loop. Also, cooling of the process gas, etching chamber and/or sample platen can aid the etching process. The method is particularly useful for adding to or removing material from a sample of microscopic dimensions.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: September 27, 2005
    Assignee: Reflectivity, INC
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Niles K. MacDonald
  • Patent number: 6950223
    Abstract: A MEMS device is disclosed comprising: a substrate; a movable micromechanical element movable relative to the substrate; a connector and a hinge for allowing movement of the micromechanical element, wherein the connector is made of a material different than the hinge. In another embodiment of the invention, the connector has a conductivity greater than the hinge. In a further embodiment of the invention, the hinge provides at least 90% of the restoring force to the MEMS device, and the connector provides 10% or less of the restoring force. In a further embodiment of the invention, the connector and the hinge have different spring constants. In a still further embodiment of the invention, the connector experiences a lower strain at maximum deflection of the micromechanical element than the hinge.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: September 27, 2005
    Assignee: Reflectivity, Inc
    Inventors: Andrew G. Huibers, Satyadev R. Patel
  • Patent number: 6947200
    Abstract: A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: September 20, 2005
    Assignee: Reflectivity, Inc
    Inventor: Andrew G. Huibers
  • Patent number: 6942811
    Abstract: The etching of a sacrificial silicon portion in a microstructure such as a microelectromechanical structure by the use of etchant gases that are noble gas fluorides or halogen fluorides is performed with greater selectivity toward the silicon portion relative to other portions of the microstructure by slowing the etch rate. The etch rate is preferably 30 um/hr or less, and can be 3 um/hr or even less. The selectivity is also improved by the addition of non-etchant gaseous additives to the etchant gas. Preferably the non-etchant gaseous additives that have a molar-averaged formula weight that is below that of molecular nitrogen offer significant advantages over gaseous additives of higher formula weights by causing completion of the etch in a shorter period of time while still achieving the same improvement in selectivity. The etch process is also enhanced by the ability to accurately determine the end point of the removal step.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: September 13, 2005
    Assignee: Reflectivity, Inc
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Hongqin Shi