Patents Represented by Attorney, Agent or Law Firm Henry E. Naylor
  • Patent number: 6537515
    Abstract: A process for producing substantially crystalline graphitic carbon nanofibers comprised of graphite sheets. The graphite sheets are substantially perpendicular to the longitudinal axis of the carbon nanofiber. These carbon nanofibers are produced by contacting an iron:copper bimetallic bulk catalyst with a mixture of carbon monoxide and hydrogen at temperatures from about 550° C. to about 670° C. for an effective amount of time.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: March 25, 2003
    Assignee: Catalytic Materials LLC
    Inventors: R. Terry K. Baker, Nelly M. Rodriguez
  • Patent number: 6525820
    Abstract: A device for in situ real time monitoring of atomic and molecular fluxes by use Rayleigh scattering. The flux can be generated by an effusion cell during molecular beam epitaxy. The present device uses a coherent light source, such as a helium neon laser, a high precision mirror assembly capable of providing an effective number of reflections though the flux beam and an interferometer detector to track the changes in flux.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: February 25, 2003
    Assignee: Gradient Technology
    Inventor: Dale W. Owens
  • Patent number: 6503660
    Abstract: A lithium ion secondary battery having an anode comprised of substantially crystalline graphitic carbon nanofibers composed of graphite sheets. The graphite sheets are preferably substantially perpendicular or parallel to the longitudinal axis of the carbon nanofiber. This invention also relates to the above-mentioned electrode for use in lithium ion secondary batteries.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: January 7, 2003
    Inventors: R. Terry K. Baker, Nelly M. Rodriguez
  • Patent number: 6485858
    Abstract: Graphite nanofiber catalyst systems for use in the production of fuel cell electrodes. The graphite nanofibers are comprised of graphite sheets aligned either substantially perpendicular or substantially parallel to the longitudinal axis of the nanofiber. The graphite nanofibers contain exposed surfaces of which at least about 95% of the exposed surfaces are comprised of edge sites.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: November 26, 2002
    Assignee: Catalytic Materials
    Inventors: R. Terry K. Baker, Nelly M. Rodriguez
  • Patent number: 6476286
    Abstract: A process for the recovery of TNT and aluminum from tritonal-containing military shells. The process uses a solvent in which the TNT is substantially soluble, but not the aluminum. This results in a liquid organic solvent phase and a solid aluminum particle phase. The aluminum particles are recovered by conventional solid-liquid separation techniques, such as filtering, gravity settling, and the like. The TNT is recovered from the solvent by flashing or evaporating the solvent and recrystallizing the TNT.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: November 5, 2002
    Assignee: Gradiaent Technology
    Inventors: William J. Taylor, Duane A. Goetsch
  • Patent number: 6382642
    Abstract: An adjustable cart for holding and transporting various size rectangular bins. The cart has an upper section and a lower section wherein said upper section contains a lip for supporting a rectangular bin. The cart also contains two vertical members spaced a predetermined distance apart and each having a lower section that is curved downwardly and rearwardly. The cart also contains wheels rotatably connected to the two vertical members and a handle connecting the two vertical members and vertically oriented members for supporting the cart.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: May 7, 2002
    Inventor: Kyle Rainey
  • Patent number: 6328938
    Abstract: A method for the integration of a manufacturing facility with a salt dome, which manufacturing facility is one for the production of high purity titanium dioxide using chlorine as a reactant. The metal chlorides produced as a by-product of titanium dioxide production are reacted with sodium hydroxide to produce metal hydroxide precipitates in an aqueous sodium chloride solution, which is then conducted into a reservoir of brine in a salt dome. The metal hydroxide precipitates are allowed to settle and the sodium chloride solution mixes with the brine. A portion of the brine is conducted to the surface where it is decomposed to produce chlorine, hydrogen, and sodium hydroxide. The chlorine and sodium hydroxide are recycled for use in the overall integrated process.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: December 11, 2001
    Inventors: Timothy L. Taylor, Tommy G. Taylor
  • Patent number: 6328234
    Abstract: The invention relates to apparatus and method for the treatment of recyclable materials from solid waste. The material is introduced into a pressure vessel where it is heated and shredded. Fluid jets within the vessel produce a cutting/agitating action on the waste material as it flows through the vessel.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: December 11, 2001
    Inventors: Kenneth C. Saucier, Harry J. Geiss
  • Patent number: 6273937
    Abstract: An improved membrane pervaporation and vapor permeation system is disclosed in which the vacuum is produced by a fluid passing through a Venturi-type nozzle. The fluid is chosen from solvents that have an affinity for the permeate molecules. It is applicable over of process feed rates, can be used with either organic or aqueous systems and conserves energy relative to existing technology.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: August 14, 2001
    Assignee: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Patent number: 6231753
    Abstract: Selective and deep desulfurization of a high sulfur content mogas naphtha, with reduced product mercaptans and olefin loss, is achieved by a two stage, vapor phase hydrodesulfurization process with interstage separation of at least 80 vol. % of the H2S formed in the first stage from the first stage, partially desulfurized naphtha vapor effluent fed into the second stage. At least 70 wt. % of the sulfur is removed in the first stage and at least 80 wt. % of the remaining sulfur is removed in the second stage, to achieve a total at least 95 wt. % feed desulfurization, with no more than a 60 vol. % feed olefin loss. The second stage temperature and space velocity are preferably greater than in the first. The hydrodesulfurization catalyst preferably contains a low metal loading of Co and Mo metal catalytic components on an alumina support.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: May 15, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Craig A. McKnight, Thomas R. Halbert, John P. Greeley, Garland B. Brignac, Richard A. Demmin, William E. Winter, Jr., Bruce R. Cook
  • Patent number: 6225255
    Abstract: An additive catalyst for the cracking of heavy oil, characterized in that the additive catalyst includes: (i) a mixed metal oxide composed of an acidic metal oxide and a basic metal oxide, in which the proportion of the basic metal oxide is from 5 to 50 mole %, (ii) clay, and (iii) silica.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: May 1, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Masato Shibasaki, Nobuo Ootake, Kaori Nakamura
  • Patent number: 6221240
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: April 24, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 6197718
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: March 6, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Patent number: 6193877
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulftir compounds found in petroleum and petrochemical streams. HDS is preferably conducted in a mixed bed containing: (a) a Ni-based catalyst on an inorganic refractory support, and (b) a hydrogen sulfide sorbent material. The desulfurized stream can then be passed to further processing, including aromatics saturation and/or ring opening.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 27, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, William C. Baird, Jr., James J. Schorfheide, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E. W. Vaughan, Jingguang Chen
  • Patent number: 6187176
    Abstract: A three stage process for producing high quality white oils, particularly food grade mineral oils from mineral oil distillates. The first reaction stage preferably employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage preferably employs a hydrogenation/hydrodesulfurization catalyst combined with a sulfur sorbent and produces a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food grade white oil.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 13, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Sylvain Hantzer, Alberto Ravella, Ian A. Cody, Darryl P. Klein
  • Patent number: 6172246
    Abstract: A multi-stage extraction process for extracting fats and oils from cooked food products. The cooked food products can be plant-derived or animal-derived food products, particularly fried snack food products, such as potato chips. The method comprises treating the cooked food product in a two or more extraction stage with a suitable solvent at effective temperatures and pressures, wherein the food product is subjected to a vacuum between each extraction stage.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: January 9, 2001
    Assignee: University Research & Marketing Inc.
    Inventor: Henry L. Franke
  • Patent number: 6162350
    Abstract: Hydroprocessing of petroleum and chemical feedstocks using bulk Group VIII/Group VIB catalysts. Preferred catalysts include those comprised of Ni--Mo--W.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: December 19, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Kenneth L. Riley, Gary P. Schleicher
  • Patent number: 6153086
    Abstract: A hydroprocessing process includes a cocurrent flow liquid reaction stage, a countercurrent flow liquid reaction stage and a vapor reaction stage in which feed components are catalytically hydroprocessed by reacting with hydrogen. Both liquid stages both produce a liquid and a vapor effluent, with the cocurrent stage liquid effluent the feed for the countercurrent stage and the countercurrent stage liquid effluent the hydroprocessed product liquid. Both liquid stage vapor effluents are combined and catalytically reacted with hydrogen in a vapor reaction stage, to form a hydroprocessed vapor. This vapor is cooled to condense and recover a portion of the hydroprocessed hydrocarbonaceous vapor components as additional product liquid. The uncondensed vapor is rich in hydrogen and is cleaned up if necessary, to remove contaminants, and then recycled back into the cocurrent stage as hydrogen-containing treat gas.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: November 28, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Henry Jung, Edward S. Ellis, James J. Schorfheide, Larry L. Iaccino
  • Patent number: 6153155
    Abstract: The invention relates to a process for recovering the transition metal component of catalysts used in the hydroconversion of heavy hydrocarbonaceous materials. In accordance with the invention, a slurry of a transition metal catalyst and hydrocarbon is catalytically desulfurized resulting in a desulfurized product and a solid residue containing the transition metal. The transition metal may be recovered by coking the residue and then dividing the coker residue into two portions are combusted with the flue dust from the first combustion zone being conducted to the second combustion zone. The flue dust from the second combustion zone is treated with ammonia and ammonium carbonate in order to obtain ammonium molybdate.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: November 28, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Michael Y. Wen, Georgui S. Golovin, Mikhail Ja. Shpirt, Leonid A. Zekel, Andrew Sullivan, Stephen Mark Davis
  • Patent number: 6126814
    Abstract: A process for hydrodesulfurizing naphtha feedstream wherein the reactor inlet temperature is below the dew point of the feedstock at the reactor inlet so that the naphtha will completely vaporize within the catalyst bed. It is preferred to use a catalyst comprised of about 1 to about 10 wt. % MoO.sub.3, about 0.1 to about 5 wt. % CoO supported on a suitable support material. They are also characterized as having an average medium pore diameter from about 60 .ANG. to 200 .ANG., a Co/Mo atomic ratio of about 0.1 to about 1.0, a MoO.sub.3 surface concentration of about 0.5.times.10.sup.-4 to about 3.0.times.10.sup.-4 g MoO.sub.3 /m.sup.2, and an average particle size of less than about 2.0 mm in diameter.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: October 3, 2000
    Assignee: Exxon Research and Engineering Co
    Inventors: Mark P. Lapinski, Kenneth L. Riley, Thomas R. Halbert, William Lasko, Jeffrey L. Kaufman