Patents Represented by Attorney Intellectual Property Law Office
  • Patent number: 8304300
    Abstract: An object is to provide a display device which operates stably with use of a transistor having stable electric characteristics. In manufacture of a display device using transistors in which an oxide semiconductor layer is used for a channel formation region, a gate electrode is further provided over at least a transistor which is applied to a driver circuit. In manufacture of a transistor in which an oxide semiconductor layer is used for a channel formation region, the oxide semiconductor layer is subjected to heat treatment so as to be dehydrated or dehydrogenated; thus, impurities such as moisture existing in an interface between the oxide semiconductor layer and the gate insulating layer provided below and in contact with the oxide semiconductor layer and an interface between the oxide semiconductor layer and a protective insulating layer provided on and in contact with the oxide semiconductor layer can be reduced.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichiro Sakata, Toshinari Sasaki, Miyuki Hosoba
  • Patent number: 8305216
    Abstract: Initialization of a semiconductor device can be efficiently performed, which transmits and receives data through wireless communication. The semiconductor device includes an antenna, a power source circuit, a circuit which uses a DC voltage generated by the power source circuit as a power source voltage, and a resistor. The antenna includes a pair of terminals and receives a wireless signal (a modulated carrier wave). The power source circuit includes a first terminal and a second terminal and generates a DC voltage between the first terminal and the second terminal by using a received wireless signal (the modulated carrier wave). The resistor is connected between the first terminal and the second terminal. In this manner, the semiconductor device and the wireless communication system can transmit and receive data accurately.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoaki Atsumi, Yutaka Shionoiri, Hidetomo Kobayashi
  • Patent number: 8305213
    Abstract: Since the chip formed from a silicon wafer is thick, the chip is protruded from the surface or the chip is so large that it can be seen through the eyes, which affects the design of a business card or the like. Hence, it is an object of the present invention to provide a new integrated circuit which has a structure by which the design is not affected. In view of the above problems, it is a feature of the invention to equip a film-like article with a thin film integrated circuit. It is another feature of the invention that the IDF chip has a semiconductor film of 0.2 mm or less, as an active region. Therefore, the IDF chip can be made thinner as compared with a chip formed from a silicon wafer. In addition, such an integrated circuit can have light transmitting characteristic unlike a chip formed from a silicon wafer.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Mai Akiba, Yohei Kanno, Yuko Tachimura
  • Patent number: 8303792
    Abstract: A method of preparing an additive suspension circuit for a hard disk drive suspension includes electrodepositing an alloy of copper using an electrolytic bath containing copper sulfate, tin, iron, sulfuric acid, and hydrochloric acid, using pulsed current of about 10-45 amperes per square foot.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: November 6, 2012
    Assignee: Magnecomp Corporation
    Inventors: Christopher Schreiber, Peter Hahn, Christopher Dunn
  • Patent number: 8304779
    Abstract: The thin film transistor includes a gate insulating film formed over a gate electrode; a microcrystalline semiconductor film including an impurity element which serves as a donor, formed over the gate insulating film; a pair of buffer layers formed over the microcrystalline semiconductor film; a pair of semiconductor films to which an impurity element imparting one conductivity type is added, formed over the pair of buffer layers; and wirings formed over the pair of semiconductor films to which an impurity element imparting one conductivity type is added. The concentration of the impurity element which serves as a donor in the microcrystalline semiconductor film is decreased from the gate insulating film side toward the buffer layers, and the buffer layers do not include the impurity element which serves as a donor at a higher concentration than the detection limit of SIMS.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiro Jinbo
  • Patent number: 8304094
    Abstract: It is an object to provide a light-emitting element with high luminous efficiency by using a hole transporting substance with a sufficiently high T1 level. Further, it is another object to provide a light-emitting device and an electronic appliance with low power consumption by using a hole transporting substance with a sufficiently high T1 level. The present invention provides a light-emitting element which has a first layer containing a spiro-9,9?-bifluorene derivative in which one amino group is combined and a second layer containing a phosphorescent compound between an anode and a cathode.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuharu Ohsawa, Sachiko Kawakami, Harue Osaka
  • Patent number: 8298858
    Abstract: An object is to increase field effect mobility of a thin film transistor including an oxide semiconductor. Another object is to stabilize electrical characteristics of the thin film transistor. In a thin film transistor including an oxide semiconductor layer, a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor is formed over the oxide semiconductor layer, whereby field effect mobility of the thin film transistor can be increased. Further, by forming a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor between the oxide semiconductor layer and a protective insulating layer of the thin film transistor, change in composition or deterioration in film quality of the oxide semiconductor layer is prevented, so that electrical characteristics of the thin film transistor can be stabilized.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideaki Kuwabara, Kengo Akimoto, Toshinari Sasaki
  • Patent number: 8300031
    Abstract: When a signal inputted to a pixel is erased by setting potentials of a gate terminal and a source terminal of a driving transistor to be equal, a current slightly flows through the driving transistor in some cases, which leads to occur a display defect. The invention provides a display device which improves the yield while suppressing the increase in manufacturing cost. When a potential of a scan line for erasure is raised, a potential of the gate terminal of the driving transistor is raised accordingly. For example, the scan line and the gate terminal of the driving transistor are connected through a rectifying element.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 8299940
    Abstract: A road-vehicle communication system comprises roadside apparatuses, a center device, and a vehicle-mounted device mounted in a vehicle. The roadside apparatuses are each given identification information for identifying itself. The center device transmits to the vehicle the identification information about a first roadside apparatus installed on the road where the vehicle is traveling as first identification information via the first roadside apparatus and the identification information about a second roadside apparatus via which the vehicle is expected to travel to the destination as second identification information when the vehicle is traveling in the lane of the road where the first roadside apparatus is installed. The vehicle-mounted device stores the transmitted first identification information.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Kenwood
    Inventor: Yoshihito Kinoshita
  • Patent number: 8297518
    Abstract: Although a product having such the IC chip has been diffused, information on the product may be capable of being perceived, abstracted, falsified, or the like by a third person with his external device during distribution of the product or after purchase of the product. Further, privacy may be seriously infringed. Paper money, various products, and the like are disclosed according to the present invention with an integrated circuit device having a switching memory for controlling reading and writing of information (lock/unlock of information) in order to protect the information recorded and stored in the integrated circuit such as an IC chip installed to the product or the like.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Yohei Kanno
  • Patent number: 8300168
    Abstract: It is an object to provide a manufacturing method by which display devices can be manufactured in quantity without degrading the characteristics of thin film transistors. In a display device including a thin film transistor in which a microcrystalline semiconductor film, a gate insulating film in contact with the microcrystalline semiconductor film, and a gate electrode overlap with each other, an antioxidant film is formed on a surface of the microcrystalline semiconductor film. The antioxidant film on the surface of the microcrystalline semiconductor film can prevent a surface of a microcrystal grain from being oxidized, thereby preventing the mobility of the thin film transistor from decreasing.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mitsuhiro Ichijo, Tetsuhiro Tanaka, Takashi Ohtsuki, Seiji Yasumoto, Kenichi Okazaki
  • Patent number: 8293593
    Abstract: An object is to provide a method for manufacturing a highly-reliable semiconductor device with an improved material use efficiency and with a simplified manufacturing process. The method includes the steps of forming a conductive layer over a substrate, forming a light-transmitting layer over the conductive layer, and selectively removing the conductive layer and the light-transmitting layer by irradiation with a femtosecond laser beam from above the light-transmitting layer. Note that the conductive layer and the light-transmitting layer may be removed so that an end portion of the light-transmitting layer is located on an inner side than an end portion of the conductive layer. Before the irradiation with a femtosecond laser beam, a surface of the light-transmitting layer may be subjected to liquid-repellent treatment.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masafumi Morisue, Koichiro Tanaka
  • Patent number: 8296050
    Abstract: A navigation device (100) has a position detection section (7), an interface (4), a touch panel (62), and a computer (1). The computer (1) has timekeeper means for clocking a current time, estimated arrival time calculation means for calculating the estimated time of arrival at a destination by using the touch panel (62), mail creation instruction means for causing, through the interface, (4) a portable telephone (200) to create mail containing text that informs arrival at the calculated estimated time of arrival, and mail transmission instruction means for causing the portable telephone (200) to transmit the created mail. The estimated time of arrival is transmitted to the other party without operation of a portable telephone by a driver.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Kenwood
    Inventor: Katsumi Tomizawa
  • Patent number: 8294157
    Abstract: It is an object to reduce the effect of a characteristic of the edge portion of a channel forming region in a semiconductor film, on a transistor characteristic. An island-like semiconductor film is formed over a substrate, and a conductive film forming a gate electrode provided over the island-like semiconductor film with a gate insulating film interposed therebetween, is formed over the semiconductor film. In the semiconductor film, a channel forming region, a first impurity region forming a source or drain region, and a second impurity region are provided. The channel forming region is provided in a region which overlaps with the gate electrode crossing the island-like semiconductor film, the first impurity region is provided so as to be adjacent to the channel forming region, and the second impurity region is provided so as to be adjacent to the channel forming region and the first impurity region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconducter Energy Laboratory Co., Ltd.
    Inventor: Hiromichi Godo
  • Patent number: 8294147
    Abstract: An object is to manufacture and provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which a semiconductor layer including a channel formation region serves as an oxide semiconductor film, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed after an oxide insulating film serving as a protective film is formed in contact with an oxide semiconductor layer. Then, the impurities such as moisture, which exist not only in a source electrode layer, in a drain electrode layer, in a gate insulating layer, and in the oxide semiconductor layer but also at interfaces between the oxide semiconductor film and upper and lower films which are in contact with the oxide semiconductor layer, are reduced.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Ohara, Junichiro Sakata, Toshinari Sasaki, Miyuki Hosoba
  • Patent number: 8293661
    Abstract: One embodiment of the present invention is to achieve high mobility in a device using an oxide semiconductor and provide a highly reliable display device. An oxide semiconductor layer including a crystal region in which c-axis is aligned in a direction substantially perpendicular to a surface is formed and an oxide insulating layer is formed over and in contact with the oxide semiconductor layer. Oxygen is supplied to the oxide semiconductor layer by third heat treatment. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer and fourth heat treatment is performed, so that hydrogen is supplied at least to an interface between the oxide semiconductor layer and the oxide insulating layer.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8293594
    Abstract: An object is to improve the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit includes a channel-etched thin film transistor for driver circuit and a driver circuit wiring formed using metal. Source and drain electrodes of the thin film transistor for the driver circuit are formed using a metal. A channel layer of the thin film transistor for the driver circuit is formed using an oxide semiconductor. The display portion includes a bottom-contact thin film transistor for a pixel and a display portion wiring formed using an oxide conductor. Source and drain electrode layers of the thin film transistor for the pixel are formed using an oxide conductor. A semiconductor layer of the thin film transistor for the pixel is formed using an oxide semiconductor.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Hiroyuki Miyake, Hideaki Kuwabara, Hideki Uochi
  • Patent number: 8294640
    Abstract: Dispersion occurs in the characteristics of the transistors. The invention is a signal line driving circuit having a first and a second current source circuits corresponding to each of a plurality of signal lines, a shift register, and a constant current source for video signal, in which the first current source circuit is disposed in a first latch and the second current source circuit is disposed in a second latch. The first current source circuit includes capacitive means for converting the current supplied from the constant current source for video signal into a voltage, according to a sampling pulse supplied from the shift register, and supplying means for supplying the current corresponding to the converted voltage. The second current source circuit includes capacitive means for converting the current supplied from the first latch into a voltage, according to a latch pulse, and supplying means for supplying the current corresponding to the converted voltage.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 8294155
    Abstract: A thin film transistor with excellent electric characteristics, a display device having the thin film transistor, and a method for manufacturing the thin film transistor and the display device are proposed. The thin film transistor includes a gate insulating film formed over a gate electrode, a microcrystalline semiconductor film formed over the gate insulating film, a buffer layer formed over the microcrystalline semiconductor film, a pair of semiconductor films to which an impurity element imparting one conductivity type is added and which are formed over the buffer layer, and wirings formed over the pair of semiconductor films to which the impurity element imparting one conductivity type is added. A part of the gate insulating film or the entire gate insulating film, and/or a part of the microcrystalline semiconductor or the entire microcrystalline semiconductor includes an impurity element which serves as a donor.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kurokawa, Yasuhiro Jinbo, Satoshi Kobayashi, Daisuke Kawae
  • Patent number: 8293626
    Abstract: It is an object to provide a homogeneous semiconductor film in which variation in the size of crystal grains is reduced. Alternatively, it is an object to provide a homogeneous semiconductor film and to achieve cost reduction. By introducing a glass substrate over which an amorphous semiconductor film is formed into a treatment atmosphere set at more than or equal to a temperature that is needed for crystallization, rapid heating due to heat conduction from the treatment atmosphere is performed so that the amorphous semiconductor film is crystallized. More specifically, for example, after the temperature of the treatment atmosphere is increased in advance to a temperature that is needed for crystallization, the substrate over which the semiconductor film is formed is put into the treatment atmosphere.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Naoki Okuno