Abstract: A data writing method for moving data in a plurality of flash memory modules during a write command of a host system is executed is provided, wherein each of the flash memory modules has a plurality of physical blocks. The present data writing method includes transferring first data received from the host system to one of the flash memory modules and writing the first data into the physical blocks of the flash memory module according to the write command. The present data writing method also includes moving at least one second data in the physical blocks of another one of the flash memory modules during the first data is written. Thereby, when the host system is about to write data into the other flash memory module, the time for executing the write command is effectively reduced.
Abstract: A management method, a management apparatus, and a controller for memory data access are provided. The management apparatus is disposed between a host and a device for managing the data transmitted between the host and the device, wherein the management apparatus includes a control unit and a storage unit. When the control unit receives a data writing command from the host, it searches for a set mapped to the data in the storage unit and updates the data in the set. Then, the control unit collects the other parts of the data in the storage unit and the device, integrates all parts of the data, and writes the integrated data into the device. Accordingly, the efficiency in data transmission can be improved, and the number of data writing operations can be reduced so that the lifespan of the device can be prolonged.
Abstract: A source driver adapted to drive a plurality of data lines on a display panel is disclosed. The source driver includes a first output buffer, a second output buffer, a multiplexer, and a first regulating unit. The first and the second output buffers respectively enhance transmission intensities of a first and a second pixel signals. The first regulating unit regulates a slew rate of the first pixel signal outputted from the first output buffer to match a slew rate of the second pixel signal outputted from the second output buffer. The multiplexer coupled to the regulating unit selectively transmits the first and the second pixel signals to one of the odd data lines and one of the even data line, or to the one of the even data lines or the one of the odd data lines, according to a control signal.
Abstract: The present invention relates to a process for removing acrylamide and/or melanoidin forming cellular ingredients from starchy plant material without enabling to remove a considerable amount of starch from the cells by washing, comprising the process steps of: providing the biological material, irreversible electroporation of the biological material, and obtaining plant material having a reduced amount of acrylamide and/or melanoidin forming cellular ingredients, the starch content of which is not enabled to be considerably reduced by washing as compared to the starting material.
Type:
Grant
Filed:
March 5, 2008
Date of Patent:
June 26, 2012
Assignee:
Intersnack Knabbergeback GmbH & Co. KG
Inventors:
Bernhard Ulrich, Reiner Haferkamp, Martin Kern
Abstract: A liquid crystal composition is provided that satisfies at least one characteristic among the characteristics such as a high maximum temperature of a nematic phase, a low minimum temperature of a nematic phase, a small viscosity, a suitable optical anisotropy, negatively large dielectric anisotropy, a large specific resistance, a high stability to ultraviolet light and a high stability to heat, or is properly balanced regarding at least two characteristics. An AM device is provided that has a short response time, a large voltage holding ratio, a large contrast ratio, a long service life and so forth. The liquid crystal composition contains tetrahedropyrene-2,5-diyl as the first component, a specific compound having negatively large dielectric anisotropy as the second component, and a negatively dielectric anisotropy. The liquid crystal display device contains the liquid crystal composition.
Abstract: A pixel structure including a substrate, a scan line, a data line, a common line, an active device, a pixel electrode, a passivation layer and a transition auxiliary electrode is provided. The scan line and the data line on the substrate intersect with each other to define a pixel region. The common line on the substrate is parallel to the scan line. The active device disposed within the pixel region is electrically connected to the scan line and the data line. The pixel electrode disposed within the pixel region is electrically connected to the active device. The passivation layer is between the data line and the pixel electrode. The transition auxiliary electrode is adjacent to the periphery of the pixel electrode and electrically connected to the common line through a contact hole of the passivation layer. The transition auxiliary electrode and the pixel electrode are made of the same film.
Abstract: An operation method of a non-volatile memory suitable for a multi-level cell having a first storage position and a second storage position is provided.
Abstract: A system of remote computer service including a call center, the Internet and a computer service supporting system. The computer service supporting system receives the requests from the computer and allocates and/or designates corresponding call center for the computer; the present invention also provides a method that the computer sends service request to the computer service supporting system by Internet; the computer service supporting system allocates and/or designates a call center for the computer and relates the computer and the call center by service ID; then, returns the communication means information and the service ID of the call center to the computer; the computer contacts with the call center by the communication means information, and the call center provides the service applied to the computer by using the service ID.
Abstract: A fixed-focus lens disposed between an object side and an image side is provided. The fixed-focus lens includes a reflector, a curved reflector, a first lens group, and a second lens group disposed in sequence from the object side to the image side. The first lens group includes two aspheric lenses. The second lens group includes a spherical lens and an aspheric lens, wherein the aspheric lens of the second lens group is closest to the image side in the second lens group. Besides, an effective focal length (EFL) of the fixed-focus lens is f, an EFL of the second lens group is f2, and a clear aperture of the aspheric lens of the second lens group is D. The fixed-focus lens satisfies one of following conditions: 0.04<f/f2<0.078 and 0.05<f/D<0.18. An apparatus integrating optical projection and image detection is provided.
Abstract: An apparatus with a dynamic interface protocol and a method for a dynamic interface protocol are provided. The apparatus is capable of consolidating multiple interface protocols to a single output terminal to reduce the number of output pins and the complexity and the cost of the apparatus. The apparatus is characterized by providing an output via the output terminal of the apparatus in accordance with a data protocol in a data mode, and providing the output via the output terminal in accordance with a video protocol in a video mode.
Abstract: A data processing apparatus of a basic input/output system (BIOS) is provided. The data processing apparatus includes a BIOS unit, a share memory and a control unit. The BIOS unit writes command data into the share memory, wherein the command data includes identification data stored in an identification field. The control unit reads and performs the command data according to the identification data in the identification field. After the command data is performed, the control unit writes returned data into the share memory for the BIOS unit to read the returned data, wherein the returned data includes the execution result of the command data performed by the control unit and also includes the identification data.
Abstract: An grouping bits interleaver includes a grouping bits unit and a data storage unit. The grouping bits unit is used for storing N data bits of an input data and outputting an address signal. Wherein each data bit is stored according to a bit position. The data storage unit coupled to the grouping bits unit is used for saving the content of the grouping bits according to the address signal. Compared to the conventional interleaver, the grouping bits interleaver has better memory usage, less access time, and smaller memory size.
Abstract: A lamp includes a shell with an assembling portion, a main body disposed in the shell, and a torsion spring. The torsion spring includes a spring body, a first supporting part, and a second supporting part. The spring body is assembled to the assembling portion. The first supporting part includes a first arm connected to an end of the spring body, a second arm near another end of the spring body and a first bending part connected between the first supporting part and the second supporting part. A structure of the second supporting part is similar to that the first supporting part and is connected to the spring body. The first supporting part and the second supporting part are suitable for tightly clamping the assembling portion and a fixing end respectively by the force of the spring body.
Type:
Grant
Filed:
March 27, 2009
Date of Patent:
June 5, 2012
Assignees:
Kinpo Electronics, Inc., Cal-Comp Electronics & Communications Company Limited
Abstract: A method for initializing a memory device is provided. The method includes a step for transmitting at least N+1 clock cycles to the memory device, wherein the N is an amount of bits of output serial data of the memory device. During a clock cycle of the at least N+1 clock cycles, a first start/stop signal is transmitted to the memory device. During another clock cycle of the at least N+1 clock cycles, a second start/stop signal is transmitted to the memory device.
Abstract: A stacked-chip packaging structure includes chip sets, a heat sink, a substrate, a circuit board, and solder balls. The chip sets are stacked together, each of which has a heat-dissipation structure and a chip. The heat-dissipation structure has a chip recess, through holes arranged in the chip recess, and an extending portion extending from the chip recess. The chip disposed in the chip recess has bumps. Each bump on the chip is correspondingly disposed in one of the through holes of the heat-dissipation structure. The extending portion of the heat-dissipation structure of each chip set contacts that of the neighboring chip set. The heat sink and the substrate are disposed at two opposite sides of the chip sets, respectively. The circuit board is below the substrate. The solder balls are between the circuit board and the substrate.
Type:
Grant
Filed:
August 24, 2009
Date of Patent:
June 5, 2012
Assignee:
Industrial Technology Research Institute