Patents Represented by Attorney J. Gustav Larson
  • Patent number: 6153519
    Abstract: A refractory Metal Nitride and a refractory metal Silicon Nitride layer (64) can be formed using metal organic chemical deposition. More specifically, tantalum nitride (TaN) (64) can be formed by a Chemical Vapor Deposition (CVD) using Ethyltrikis (Diethylamido) Tantalum (ETDET) and ammonia (NH.sub.3). By the inclusion of silane (SiH.sub.4), tantalum silicon nitride (TaSiN) (64) layer can also be formed. Both of these layers can be formed at wafer temperatures lower than approximately 400.degree. C. with relatively small amounts of carbon (C) within the film. Therefore, the embodiments of the present invention can be used to form tantalum nitride (TaN) or tantalum silicon nitride (TaSiN) (64) that is relatively conformal and has reasonably good diffusion barrier properties.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: November 28, 2000
    Assignee: Motorola, Inc.
    Inventors: Ajay Jain, Elizabeth Weitzman
  • Patent number: 6130102
    Abstract: A method for forming an improved embedded DRAM structure, that is formed on-chip with CMOS logic portions, begins by forming dual inlaid regions (34a through 34c). The region (34a) is a portion of a dual inlaid region which is filled with an oxidation tolerant material (e.g., iridium or ruthenium) to form a metallic plug (36a). This plug (36a) forms a storage node region for a DRAM and electrically contacts to a current electrode (26) of a DRAM pass transistor. Opening (34b) is filled concurrently with the filling of opening (34a), to form a metallic plug (36b) which forms a bit line contact for the DRAM cell. A top portion of the dual inlaid structure (34c) is filled concurrent with regions (34a and 34b) to enable formation of a bottom electrode of the ferroelectric DRAM capacitor. Since the geometry of the region (36c) is defined by dual inlaid/CMP processing, no RIE-defined sidewall of the bottom capacitor electrode is present whereby capacitor leakage current is reduced.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: October 10, 2000
    Assignee: Motorola Inc.
    Inventors: Bruce E. White, Jr., Robert Edwin Jones, Jr.
  • Patent number: 6088782
    Abstract: A Single Instruction Multiple Data processor apparatus for implementing algorithms using sliding window type data is shown. The implementation shifts the elements of a Destination Vector Register (406, 606) either automatically every time the destination register value is read or in response to a specific instruction (800). The shifting of the Destination Vector Register (406, 606) allows each processing element to operate on new data. As the destination vector (406, 606) elements are shifted, a new element is provided to the vector from a Source Vector Register (404, 604).
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: July 11, 2000
    Assignee: Motorola Inc.
    Inventors: De-Lei Lee, L. Rodney Goke, William Carroll Anderson
  • Patent number: 6063698
    Abstract: A method for forming a gate dielectric (14b) begins by providing a substrate (12). A high K dielectric layer (14a) is deposited overlying the substrate (12). The dielectric layer (14a) contains bulk traps (16) and interface traps (18). A polysilicon gate electrode (20) is then patterned and etched overlying the gate dielectric (14a) whereby the plasma etching of the gate electrode (20) results in substrate plasma damage (22). A post gate wet oxidation process is performed between 750.degree. C. and 850.degree. C. to reduce plasma etch damage and trap sites (16, 18) in order to provide an improved gate dielectric (14b). Source and drain electrodes (30) are then formed within the substrate and laterally adjacent the gate electrode (20) to form a transistor device having more consistent threshold voltages, improved subthreshold slope operation, reduced gate to channel leakage, and improved speed of operation.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: May 16, 2000
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin
  • Patent number: 6026501
    Abstract: A central processing unit (2) and a debug module (10) execute concurrent operations without requiring a data processor (3) to operate in a special debug mode. The use of a bus (25) to communicate data, address, and control information between a core (9) and debug module (10) allows debug module (10) to have access the same internal registers and memory locations as central processing unit (2). While debug module (10) and central processing unte (2) both have the ability to access the same internal registers and memory locations, central processing unit (2) may not modify a value stored in a plurality of breakpoint registers (50) when an Inhibit Processor Writes to Debug Registers (IPW) bit in a CSR (FIG. 8) of a plurality of control registers (40) is set. The IPW bit may only be modified by a command provided by an external development system (7).
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: February 15, 2000
    Assignee: Motorola Inc.
    Inventors: William A. Hohl, Joseph C. Circello
  • Patent number: 5966517
    Abstract: In operation, a standard cell library having diode place-holders (16) associated with standard cell inputs (12) is used to design a standard cell-based semiconductor device. Each standard cell in the standard cell-based semiconductor device is analyzed to determine if its standard cell inputs (12) will be connected to a conductive element (18) during processing that can accumulate a charge. When a conductive element (18) that can accumulate charge is identified, the diode place-holder (16) associated with its standard cell input (12) is replaced with a diode (16).
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: October 12, 1999
    Assignee: Motorola, Inc.
    Inventors: Daniel R. Cronin, III, Ricardo Fernandez, Richard J. Swindlehurst
  • Patent number: 5962926
    Abstract: The present invention comprises a semiconductor device (20) having a active circuit (22) and a bond pad area (24). Within the bond pad area there are a plurality of rows of bond pads. Sets of bond pads (30-36) include one bond pad from each row. The bond pads (26) are uniquely positioned within the bond pad area (24) to allow for a first wire pitch between pads which are adjacent and in the same set, and a second wire pitch between pads which are adjacent and in different sets. A method of determining placement of the bond pads (26) is taught.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: October 5, 1999
    Assignee: Motorola, Inc.
    Inventors: Victor Manuel Torres, Ashok Srikantappa, Laxminarayan Sharma
  • Patent number: 5960036
    Abstract: A communications system 10 having an Asymmetric Digital Subscriber Line (ADSL) transceiver (24) is provided which may be configured either as a central office or a remote terminal in a system. The transceiver (24) operates in a listen/report idle state to report line activity to a host processor (22) prior to being configured as a central office or remote terminal. The host processor configures the transceiver (24) as a central office, remote terminal, or as otherwise specified based on the line activity.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: September 28, 1999
    Assignee: Motorola, Inc.
    Inventors: Terence L. Johnson, Peter R. Molnar, Jeffrey P. Gleason, Howard E. Levin
  • Patent number: 5904800
    Abstract: The present invention incorporates an electrically-controlled grid (250) between a liner (220) and an isolation region (252) of a processing chamber (210). The electrically-controlled grid (250) is powered during a processing step of a semiconductor substrate (230) such that particles (235) suspended in the processing chamber (212) are attracted toward the grid (250) and away from the semiconductor substrate (230). A non-adhesive liner (220) is utilized to allow particles (235) and polymers to be directed toward a pumping port (239).
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: May 18, 1999
    Assignee: Motorola, Inc.
    Inventor: Karl Emerson Mautz
  • Patent number: 5903471
    Abstract: A slack time, based on a required and actual delay time, is calculated for each node in a circuit (302). For each element in the circuit, a sensitivity (304) and a figure of merit (306) is calculated. A variance is determined for the calculated figure of merits (308). The circuit element having the smallest absolute figure or merit is optimized when the variance is smaller than a predefined threshold (310, 312).
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: May 11, 1999
    Assignee: Motorola, Inc.
    Inventors: Satyamurthy Pullela, Timothy J. Edwards, Joseph Norton, Abhijit Dharchoudhury, David Blaauw
  • Patent number: 5899745
    Abstract: A chemical mechanical polishing (CMP) method utilizes a polishing pad (21) and an under pad (20). The under pad (20) has an edge portion (24) and a central portion (22). The central portion (22) has either a shore D hardness less than a shore D hardness of the portion (24), greater slurry absorption than the edge portion (24), or more compressibility than the edge portion (24). This composite material under pad (20) will improve polishing uniformity of a semiconductor wafer (39). In addition, the use of the polishing pads (20 and 21) allows for greater final wafer profile control than was previously available in the art (FIGS. 4-6).
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: May 4, 1999
    Assignee: Motorola, Inc.
    Inventors: Sung C. Kim, Lei Ping Lai, Rajeev Bajaj, Adam Manzonie
  • Patent number: 5890191
    Abstract: Method and apparatus for providing erasing and programming protection of an EEPROM (22) to significantly reduce the possibility of unintentional erasing or programming of the EEPROM (22). In one embodiment, a read access of a block protect value (111) is a requirement for enabling the EEPROM charge pump (78). The block protect value (111) may be located in the EEPROM array (22) itself. In one embodiment, an externally provided signal (24) must be provided to an integrated circuit (10) in order to enable a write access to modify the block protect value (111). In one embodiment, a charge pump enable value (103) is provided to enable or disable operation of the charge pump (78). Thus, a combination of hardware and software protection is provided for an EEPROM (22), including protection for enabling of a charge pump (78).
    Type: Grant
    Filed: May 10, 1996
    Date of Patent: March 30, 1999
    Assignee: Motorola, Inc.
    Inventors: George L. Espinor, Michael I. Catherwood
  • Patent number: 5861347
    Abstract: A method for form an integrated circuit device begins by growing a tunnel oxide (22). The tunnel oxide is exposed to a nitrogen containing ambient whereby nitrogen is incorporated at atomic locations at the interface between the tunnel oxide (22) and a substrate (11). This tunnel oxide and nitrogen exposure is performed for all of a floating gate active area (12), a high voltage active area (14) and a logic gate active area (16). A floating gate electrode (24) and interpoly dielectric regions (26 through 30) are then formed in the floating gate region (12). The tunnel oxide (22) is etched from the active areas (14 and 16) whereby nitrogen contamination (32) may remain. An optional sacrificial oxidation and a low temperature 830.degree. C. wet oxidation process utilizing HCL, H2 and O2 is then used to grow a high voltage gate dielectric (34) which has been shown to improve charge to breakdown characteristics by a factor of 1,000.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: January 19, 1999
    Assignee: Motorola Inc.
    Inventors: Bikas Maiti, Wayne Paulson, James Heddleson
  • Patent number: 5852633
    Abstract: A communications system (30) includes a transceiver (42) for transmitting data from a plurality of bins. Specifically, the BER of the bins is substantially equalized by allocating data by determining a projected margin. The projected margin is calculated for each bin by subtracting a reference signal-to-noise value from an estimated bin signal-to-noise value. The reference signal-to-noise value is predetermined by theoretical calculation or empirical data and stored in a look-up table. Bits are allocated to the bin having the maximum projected margin. This provides the best BER without changing the transmit power.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: December 22, 1998
    Assignee: Motorola, Inc.
    Inventors: Howard E. Levin, Jeffrey P. Gleason
  • Patent number: 5849440
    Abstract: A process for fabricating a semiconductor device includes the formation of a lithographic reticle (20) having a lithographic pattern (18) overlying a reticle substrate (10). In one embodiment, a reticle inspection database incorporates altered resolution assisting features (30,32) to inspect the lithographic pattern (18). The dimensional difference between the reticle inspection database and the lithographic reticle is substantially equal to the process bias realized during reticle fabrication. Inspection of the lithographic reticle (20) using a reticle inspection database containing altered resolution assisting features reduces the false detection of defects and provides increased sensitivity in the reticle inspection process.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: December 15, 1998
    Assignee: Motorola, Inc.
    Inventors: Kevin D. Lucas, Michael E. Kling, Alfred J. Reich, Chong-Cheng Fu, James Morrow
  • Patent number: 5837612
    Abstract: A method for forming shallow trench isolation (STI) (100) begins by forming an oxidizable layer (106) preferably made of polysilicon. An opening is patterned and etched through this layer (106) to define and form the trench isolation region (108). Silicon sidewalls of the trench (108) and the polysilicon layer (106) are then exposed to an oxidizing ambient to form a thermal oxide trench liner (107a) and an erosion-protection polysilicon-oxide layer (107b). A trench fill material (110a) is then deposited and chemically mechanically polished (CMP) utilizing the polysilicon layer (106) as a polish stop. The final polished trench fill plug comprises an ozone TEOS bulk material (110c) and an annular peripheral upper erosion-protection portion formed of the polysilicon-oxide (107d). The annular polysilicon-oxide protection regions (107d) either reduce or entirely eliminate adverse sidewall parasitic erosion which occurs in conventional trench technology when processing active areas (124).
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: November 17, 1998
    Assignee: Motorola, Inc.
    Inventors: Sergio Ajuria, Soolin Kao
  • Patent number: 5834320
    Abstract: Process for maintaining lead positions within a glass layer of a CQFP semiconductor device by using a magnet during high temperature assembly operations. During lead embed, a magnet (46) is magnetically attached to lead frame (44). Upon reflow of a glass layer (48), leads (50) sink into the glass layer to a height controlled by the height (H) of a protrusion (52) of the magnet. A similar magnet (62) can be used to maintain the lead positions during a high temperature operation used to cure a die attach material (60). Yet another magnet (70) can be used to maintain the positions of leads (50) during a lid seal operation. A common magnet design for use in all thermal operations can instead be used. Use of the magnets restrict movement of the leads within the glass layer when the glass is in a softened state.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: November 10, 1998
    Assignee: Motorola, Inc.
    Inventors: Wyatt A. Huddleston, Andrew Szewczyk
  • Patent number: 5825819
    Abstract: A differential amplifier (40) receives a low level ADSL signal IN- and IN+ and produces an amplified differential signal. A pair of differential amplifiers (42, 44) receives the differential signal and provides phase shifting and further amplification to the differential signal. A set of differential pairs (46, 48, 50, 52) are coupled to the pair of differential amplifiers (42, 44) and provide further amplification and drive capability to the differential signal. A pair of driver pairs 54 and 56 are coupled to the differential pairs (46, 48, 50, 52) to provide a fully differential output signal OUT- and OUT+ with high linearity. A common mode feedback stage (58) and gain feedback stage (98) provide feedback.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: October 20, 1998
    Assignee: Motorola, Inc.
    Inventor: Onis Cogburn
  • Patent number: 5825826
    Abstract: A data stream to be transmitted is received by a digital interface (52) and converted into a frequency encoded data. A gains block (54) receives the frequency encoded data and a gain adjustment signal, and produces a gain adjusted data to compensate for undesirable system level passband gain variation. The gain adjusted data is converted to a time domain data. The time domain data is processed by a high-pass and a droop correction filter (58, 59) to produce a filtered data. The filtered data is provided through an analog front-end (60) in order to provide a filtered analog data.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: October 20, 1998
    Assignee: Motorola, Inc.
    Inventors: Michael R. May, Carlos A. Greaves
  • Patent number: 5824584
    Abstract: A non-volatile memory having a control gate (14) and a sidewall select gate (28) is illustrated. The sidewall select gate (28) is formed in conjunction with a semiconductor doped oxide (20) to form a non-volatile memory cell (7). The semiconductor element used to dope the oxide layer (20) will generally include silicon or germanium. The non-volatile memory cell (7) is programmed by storing electrons in the doped oxide (20), and is erased using band-to-band tunneling.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: October 20, 1998
    Assignee: Motorola, Inc.
    Inventors: Wei-Ming Chen, Lee Z. Wang, Kuo-Tung Chang, Craig Swift