Patents Represented by Attorney, Agent or Law Firm J. Timothy Meigs
  • Patent number: 6232525
    Abstract: Methods are provided for selecting parental plants exhibiting disease resistance and for using these plants in breeding programs. In one method of the invention, constitutive immunity (cim) mutants are screened for either resistance to a pathogen of interest or for the expression of systemic acquired resistance (SAR) genes. Such mutants having the desired traits or expressing the desired genes are then used in breeding programs. Parent plants can also be selected based on the constitutive expression of SAR genes. These mutants are phenotypically normal yet exhibit a significant level of disease resistance. Also disclosed are lesion-simulating-disease (lsd) mutants having a lesion mimic phenotype that also express SAR genes and exhibit disease resistance. Further disclosed are non-inducible immunity (nim) mutants that do not express SAR genes, even when induced by a pathogen. Methods of use for these mutants are also disclosed.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: May 15, 2001
    Assignee: Novartis Finance Corporation
    Inventors: John Andrew Ryals, Scott Joseph Uknes, Eric Russell Ward, Terrence Patrick Delaney
  • Patent number: 6221595
    Abstract: The present invention relates to the use of primers in polymerase chain reaction assays for the detection of fungal pathogens, particularly Monilinia laxa and Monilinia fructicola. Specific primers are identified as being useful for the indentification of fungal isolates, particularly Monilinia laxa and Monilinia fructicola, using PCR based techniques.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: April 24, 2001
    Assignee: Syngenta Participations AG
    Inventors: James Joseph Beck, Christy Violet Perry
  • Patent number: 6204057
    Abstract: The invention relates to isolated polynucleotides and the proteins encoded thereby, and to their use in controlling lamellicorn beetles (Scarabaeidae). In addition, the invention relates to a method of producing those proteins. The polynucleotides of the invention encode proteins that are identical to or at least related to the crystal proteins characteristic of Bacillus popilliae and that are suitable for the inhibition of the feeding activity and/or for the destruction of adult and/or larval scarabaeids, especially Melolontha species and species closely related thereto.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: March 20, 2001
    Assignee: Syngenta Participations AG
    Inventors: Wolfgang Schnetter, Lutz Krieger, Jiambing Zhang
  • Patent number: 6204246
    Abstract: The present invention provides, inter alia, a B.t. hybrid toxin fragment comprising at its C-terminus domain III of a first Cry protein, or a part of said domain or a protein substantially similar to said domain; and comprising at its N-terminus the N-terminal region of a second Cry protein, or a part of said region or a protein substantially similar to said region.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: March 20, 2001
    Assignee: Novartis AG
    Inventors: Hendrik Jan Bosch, Willem Johannes Stiekema
  • Patent number: 6177245
    Abstract: The present invention provides novel eukaryotic DNA sequences coding for native protoporphyrinogen oxidase (protox) or modified forms of the enzyme which are herbicide tolerant. Plants having altered protox activity which confers tolerance to herbicides are also provided. These plants may be bred or engineered for resistance to protox inhibitors via mutation of the native protox gene to a resistant form or through increased levels of expression of the native protox gene, or they may be transformed with modified eukaryotic or prokaryotic protox coding sequences or wild type prokaryotic protox sequences which are herbicide tolerant. Diagnostic and other uses for the novel eukaryotic protox sequence are also described. Plant genes encoding wild-type and altered protox, purified plant protox, methods of isolating protox from plants, and methods of using protox-encoding genes are also disclosed.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: January 23, 2001
    Assignee: Novartis Finance Corporation
    Inventors: Eric R. Ward, Sandra Volrath
  • Patent number: 6174860
    Abstract: Novel nucleic acid sequences isolated from Xenorhabdus nematophilus, Xenorhabdus poinarii, and Photorhabdus luminescens, whose expression results in novel insecticidal toxins, are disclosed herein. The invention also discloses compositions and formulations containing the insecticidal toxins that are capable of controlling insect pests. The invention is further drawn to methods of making the toxins and to methods of using the nucleotide sequences, for example in microorganisms to control insect pests or in transgenic plants to confer insect resistance.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: January 16, 2001
    Assignee: Novartis AG
    Inventors: Vance Cary Kramer, Michael Kent Morgan, Arne Robert Anderson
  • Patent number: 6147282
    Abstract: The present invention is drawn to a method of controlling gene expression in plants. Specifically, the method comprises obtaining a transgenic plant comprising at least two receptor expression cassettes and at least one target expression cassette. The first receptor expression cassette comprises a nucleotide sequence for a 5' regulatory region operably linked to a nucleotide sequence which encodes a first receptor polypeptide, and a 3' termination region. The second receptor expression cassette comprises a nucleotide sequence for a 5' regulatory region operably linked to a nucleotide sequence which encodes a second receptor polypeptide, and a 3' termination region.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: November 14, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Stephen A. Goff, Lyle D. Crossland, Laura S. Privalle
  • Patent number: 6137033
    Abstract: The genes encoding a novel class of insectecidal proteins have been isolated and characterized from a strain of Bacillus thuringiensis. Both the nucleic and amino acid sequences for the proteins are disclosed. The nucleic acid molcules are utilized in the transformation of host microorganisms and production of trangenic plants which are resistant to insects. Also, the gene encoding for the insect's receptor of the insecticide protein has been isolated and characterized. Novel processes and methods for controlling plants pests are provided.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: October 24, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Juan J. Estruch, Gregory W. Warren, Nalini M. Desai, Michael G. Koziel, Gordon J. Nye
  • Patent number: 6133417
    Abstract: New cytochrome P-450 dependent monooxygenases and DNA molecules encoding these monooxygenases are provided, which are able to catalyze the biosynthetic pathway from amino acids to their corresponding cyanohydrins, the presursors of the cyanogenic glycosides, or to glucosinolates. Moreover, the invention provides methods for obtaining DNA molecules according to the invention and methods for obtaining transgenic plants resistant to insects, acarids, or nematodes or plants with improved nutritive value.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: October 17, 2000
    Assignees: Novartis Finance Corporation, Royal Veterinary Agricultural University
    Inventors: Birgit Maria Koch, Ole Sibbesen, Barbara Ann Halkier, Birger Lindberg M.o slashed.ller
  • Patent number: 6121014
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: September 19, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis
  • Patent number: 6121029
    Abstract: Nucleic acid molecules are isolated from Sorangium cellulosum that encode polypeptides necessary for the biosynthesis of epothilone. Disclosed are methods for the production of epothilone in recombinant hosts transformed with the genes of the invention. In this manner, epothilone can be produced in quantities large enough to enable their purification and use in pharmaceutical formulations such as those for the treatment of cancer.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: September 19, 2000
    Assignee: Novartis AG
    Inventors: Thomas Schupp, James Madison Ligon, Istvan Molnar, Ross Zirkle, Devon Dawn Cyr, Jorn Gorlach
  • Patent number: 6121521
    Abstract: The present invention describes the design and construction of a chimeric insecticidal protein by joining the 5' portion of a synthetic maize optimized cry1B gene (SFLIB) to the 3' end of a full-length synthetic maize optimized cry1A(b) gene to generate a full-length hybrid cry1B gene (hyFLIB). When the chimeric insecticidal protein gene is expressed in transgenic maize from both PEPC and pith promoters, insecticidal activity is observed in transgenic maize tissue against European corn borer (Ostrinia nubilalis). An additional aspect of the invention is recombinant, biologically pure microbial strains transformed with the hyFLIB gene which can be used in entomocidal formulations for the control of Lepidopteran insects. Yet another aspect of the invention is plants transformed with the toxin gene or active fragments thereof, particularly where the transforming sequences have been optimized for expression in maize.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: September 19, 2000
    Assignee: Novartis AG
    Inventor: Nalini M. Desai
  • Patent number: 6117670
    Abstract: The present invention is directed to the production of pyrrolnitrin in a host via recombinant expression of the polypeptides needed to biologically synthesize pyrrolnitrin. Genes isolated from P. fluorescens, P. pyrrocinia, B. cepacia, and M. fulvus that encode polypeptides necessary to produce pyrrolnitrin are provided, along with methods for identifying and isolating genes needed to recombinantly biosynthesize pyrrolnitrin from any organism capable of producing pyrrolnitrin. The isolated genes may be transformed and expressed in a desired host organisms to produce pyrrolnitrin according to the invention for a variety of purposes, including protecting the host from a pathogen, developing the host as a biocontrol agent, and producing large, uniform amounts of pyrrolnitrin.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: September 12, 2000
    Assignee: Novartis Finance Corporation
    Inventors: James Madison Ligon, Dwight Steven Hill, Stephen Ting Lam, Philip Eugene Hammer, Karl-Heinz van Pee, Sabine Kirner, Thomas R. Young
  • Patent number: 6114608
    Abstract: The present invention is drawn to a novel DNA construct comprising an expression cassette having a constitutive promoter which functions in plant cells operably linked to a maize alcohol dehydrogenase intron, a DNA sequence of a gene encoding a Cry 1Ab protein, and a terminator functional in plants and optionally further comprising a second cassette including a promoter which functions in plants operably linked to a maize alcohol dehydrogenase intron, a DNA sequence of a gene encoding for phosphinothricin acetyl transferase, and a terminator functional in plants wherein the two cassettes are transcribed in the same direction. Also provided are transgenic plants, particularly maize plants, having such a construct stably incorporated into their genomes.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: September 5, 2000
    Assignee: Novartis AG
    Inventors: Irvin J Mettler, Paul S Dietrich, Ralph M. Sinibaldi
  • Patent number: 6107544
    Abstract: Methods are provided for selecting parental plants exhibiting disease resistance and for using these plants in breeding programs. In one method of the invention, constitutive immunity (cim) mutants are screened for either resistance to a pathogen of interest or for the expression of systemic acquired resistance (SAR) genes. Such mutants having the desired traits or expressing the desired genes are then used in breeding programs. Parent plants can also be selected based on the constitutive expression of SAR genes. These mutants are phenotypically normal yet exhibit a significant level of disease resistance. Also disclosed are lesion-simulating-disease (lsd) mutants having a lesion mimic phenotype that also express SAR genes and exhibit disease resistance. Further disclosed are non-inducible immunity (nim) mutants that do not express SAR genes, even when induced by a pathogen. Methods of use for these mutants are also disclosed.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: August 22, 2000
    Assignee: Novartis Finance Corporation
    Inventors: John Andrew Ryals, Scott Joseph Uknes, Eric Russell Ward, Terrence Patrick Delaney, Kay Ann Lawton, Kristianna Baldwin Weymann, Henry-York Steiner, Klaus Maleck
  • Patent number: 6107279
    Abstract: The genes encoding a novel class of insecticidal proteins have been isolated and characterized from a strain of Bacillus thuringiensis. Both the nucleic and amino acid sequences for the proteins are disclosed. The nucleic acid molecules are utilized in the transformation of host microorganisms and production of transgenic plants which are resistant to insects. Also, the gene encoding for the insect's receptor of the insecticidal protein has been isolated and characterized. Novel processes and methods for controlling plants pests are provided.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: August 22, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Juan J. Estruch, Cao-Guo Yu, Gregory W. Warren, Nalini M. Desai, Michael G. Koziel, Gordon J. Nye
  • Patent number: 6091004
    Abstract: The invention concerns the location and characterization of a gene (designated NIM1) that is a key component of the SAR pathway and that in connection with chemical and biological inducers enables induction of SAR gene expression and broad spectrum disease resistance in plants. The invention further concerns transformation vectors and processes for overexpressing the NIM1 gene in plants. The transgenic plants thus created have broad spectrum disease resistance.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: July 18, 2000
    Assignee: Novartis Finance Corporation
    Inventors: John Andrew Ryals, Terrence Patrick Delaney, Leslie Bethards Friedrich, Kristianna Baldwin Weymann, Kay Ann Lawton, Daniel Murray Ellis, Scott Joseph Uknes, Taco Peter Jesse, Pieter Vos
  • Patent number: 6084155
    Abstract: The present invention provides novel DNA sequences coding for protoporphyrinogen oxidase (protox) enzymes from soybean, wheat, cotton, sugar beet, oilseed rape, rice, sorghum, and sugar cane. In addition, the present invention teaches modified forms of protox enzymes that are herbicide tolerant. Plants expressing herbicide tolerant protox enzymes taught herein are also provided. These plants may be engineered for resistance to protox inhibitors via mutation of the native protox gene to a resistant form or they may be transformed with a gene encoding an herbicide tolerant form of a plant protox enzyme.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: July 4, 2000
    Assignee: Novartis AG
    Inventors: Sandra L. Volrath, Marie A. Johnson, Eric R. Ward, Peter B. Heifetz
  • Patent number: 6075185
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 13, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6071698
    Abstract: Internal Transcribed Spacer (ITS) DNA sequences from the ribosomal RNA gene region are described for different species and strains of Helminthosporium carbonum, Helminthosporium turcicum, Helminthosporium maydis, Cercospora zeae-maydis, Kabatiella zeae and Puccinia sorghi. Specific primers from within these sequences are identified as being useful for the identification of the fungal isolates using PCR-based techniques. Also described is a novel extraction buffer solution for use in isolating DNA from an organism.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: June 6, 2000
    Assignee: Novartis Finance Corporation
    Inventor: James Joseph Beck