Patents Represented by Attorney James L. Clingan, Jr.
  • Patent number: 7923769
    Abstract: A non-volatile memory cell including a substrate in which is formed a source region and a drain region defining a channel region between the source region and the drain region is provided. The non-volatile memory cell further includes a select gate structure overlying a first portion of the channel region. The non-volatile memory cell further includes a control gate structure formed overlying a second portion of the channel region, wherein the control gate structure includes a nanocrystal stack having a height, wherein the control gate structure has a convex shape in a corner region formed at an intersection of a first plane substantially parallel to a top surface of the substrate and a second plane substantially parallel to a side surface of the control gate structure, wherein a ratio of radius of the control gate structure in the corner region to the height of the nanocrystal stack is at least 0.5.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 12, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Brian A. Winstead
  • Patent number: 7923328
    Abstract: A non-volatile memory cell including a substrate in which is formed a source region and a drain region defining a channel region between the source region and the drain region is provided. The non-volatile memory cell further includes a select gate structure overlying a first portion of the channel region. The non-volatile memory cell further includes a control gate structure formed overlying a second portion of the channel region, wherein the control gate structure includes a nanocrystal stack having a height, wherein the control gate structure has a convex shape in a corner region formed at an intersection of a first plane substantially parallel to a top surface of the substrate and a second plane substantially parallel to a side surface of the control gate structure, wherein a ratio of radius of the control gate structure in the corner region to the height of the nanocrystal stack is at least 0.5.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 12, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Brian A. Winstead
  • Patent number: 7910482
    Abstract: A method for processing a substrate comprising at least a buried oxide (BOX) layer and a semiconductor material layer is provided. The method includes etching the semiconductor material layer to form a vertical semiconductor material structure overlying the BOX layer, leaving an exposed portion of the BOX layer. The method further includes exposing a top surface of the exposed portion of the BOX layer to an oxide etch resistant species to form a thin oxide etch resistant layer overlying the exposed portion of the BOX layer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tab A. Stephens, Leo Mathew, Lakshmanna Vishnubholta, Bruce E. White
  • Patent number: 7902022
    Abstract: A method includes forming a silicon nitride layer and patterning it to form a first opening and a second opening separated by a first portion of silicon nitride. Gate material is deposited in the first and second openings to form first and second select gate structures in the first and second openings. Second and third portions of silicon nitride layer are removed adjacent to the first and second gate structures, respectively. A charge storage layer is formed over the semiconductor device after removing the second and third portions. First and second sidewall spacers of gate material are formed on the charge storage layer and adjacent to the first and second gate structures. The charge storage layer is etched using the first and second sidewall spacers as masks. The first portion is removed. A drain region is formed in the semiconductor layer between the first and second gate structures.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: March 8, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Patent number: 7881138
    Abstract: A memory has a pre-amplifier for generating an output signal and a reference signal. The memory includes a comparator for comparing the output signal to the reference signal. The comparator includes a bias stage for generating a bias signal, wherein the bias signal is an average of the output signal and the reference signal. The comparator further includes a first output stage for generating a first comparator output signal by comparing the output signal and the bias signal. The comparator further includes a second output stage for generating a second comparator output signal by comparing the reference signal and the bias signal.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 1, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brad Garni, Thomas Andre, Jean Lasseuguette
  • Patent number: 7871854
    Abstract: A method includes forming a first opening in a top surface of a semiconductor substrate, performing an implant into the top surface to form a doped region, epitaxially growing a semiconductor layer in the first opening along a bottom of the first opening and along sidewalls of the first opening, wherein the epitaxially growing comprises in-situ doping the semiconductor layer, filling the first opening with a dielectric material, forming a second opening in the dielectric material, wherein a bottom of the second opening exposes the epitaxially grown semiconductor layer and sidewalls of the second opening expose the dielectric material; and filling the second opening with a semiconductor material, wherein the semiconductor material comprises a top electrode and a bottom electrode. The bottom electrode is in electrical contact with the semiconductor layer which is in electrical contact with the doped region. The doped region is laterally adjacent the semiconductor material.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: January 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, Robert E. Jones
  • Patent number: 7872311
    Abstract: A method and apparatus is presented that provides mobility enhancement in the channel region of a transistor. In one embodiment, a channel region (18) is formed over a substrate that is bi-axially stressed. Source (30) and drain (32) regions are formed over the substrate. The source and drain regions provide an additional uni-axial stress to the bi-axially stressed channel region. The uni-axial stress and the bi-axially stress are both compressive for P-channel transistors and tensile for N-channel transistors. Both transistor types can be included on the same integrated circuit.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Suresh Venkatesan
  • Patent number: 7869609
    Abstract: A method and apparatus are provided for mixing a plurality of signals within a predetermined dynamic range without clipping. In the method and apparatus, first and second signal samples are added together to obtain a first intermediate result. Then the first signal sample is multiplied with the second signal sample to obtain a second intermediate result. In one embodiment, the second intermediate result is subtracted from the first intermediate result to obtain a third intermediate result, and the third intermediate result is discarded if the third intermediate result is less than zero. In another embodiment, the second intermediate result is added to the first intermediate result to obtain the third intermediate result, and the third intermediate result is discarded if the third intermediate result is greater than zero. An output signal sample is provided based on the third intermediate result.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: January 11, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lucio F. C. Pessoa, Kim-Chyan Gan
  • Patent number: 7863963
    Abstract: A circuit comprises first and second inverters, first, second, third, and fourth transistors, and an enabling circuit. The first and second inverters each have an input terminal for receiving one of the first or second input signals, an output terminal, and first and second supply terminals. The first transistor is coupled to a first power supply terminal, to the output terminal of the second inverter, and to the first inverter. The second transistor is coupled to the first power supply terminal, to the output terminal of the first inverter, and to the first supply terminal of the second inverter. The third and fourth transistor are coupled to the second supply terminals of the first and second inverters, respectively, and each includes a control electrode and a second current electrode. The enabling circuit is for controlling the third and fourth transistors to reduce a leakage current in the circuit.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: January 4, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Shayan Zhang, Andrew C. Russell, Hector Sanchez
  • Patent number: 7864617
    Abstract: A memory includes a selection circuit and a write assist circuit. The selection circuit has a first input, a second input coupled to a first power supply voltage terminal, an output coupled to a power supply terminal of each of a plurality of memory cells, and a control input for receiving a write assist control signal. The write assist circuit is coupled to the first input of the selection circuit for reducing a voltage at the power supply terminal of each of the plurality of memory cells during a write operation and in response to an asserted write assist enable signal. The write assist circuit comprises a P-channel transistor and a bias voltage generator. The P-channel transistor is for reducing the voltage at the power supply terminal of each of the plurality of memory cells during the write operation. The bias voltage generator is for providing a variable bias voltage to the P-channel transistor.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: January 4, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Prashant Kenkare
  • Patent number: 7858482
    Abstract: A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Christopher C. Hobbs, Srikanth B. Samavedam
  • Patent number: 7851340
    Abstract: There is a method for forming a semiconductor device. Portions of a sacrificial layer are removed to expose a first seed layer region. The first seed layer region corresponds to a first semiconductor region, and a remaining portion of the sacrificial layer corresponds to a second semiconductor region. An epitaxial semiconductor material is deposited over the first seed layer region. A capping layer is formed to overlie the epitaxial semiconductor material and the remaining portion of the sacrificial layer. Portions of the capping layer are removed to form a capping structure that overlies a part of the remaining portion of the sacrificial layer. Portions of the sacrificial layer not covered by the capping structure are removed to form a sacrificial structure having sidewalls. Fin structures are formed adjoining the sidewalls by depositing a semiconductor material along the sidewalls. Portions of the capping structure are removed to expose portions of sacrificial layer between adjacent fin structures.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: December 14, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rickey S. Brownson, Robert E. Jones
  • Patent number: 7842573
    Abstract: A virtual ground memory array (VGA) is formed by a storage layer over a substrate with a conductive layer over the storage layer. The conductive layer is opened according to a patterned photoresist layer. The openings are implanted to form source/drain lines in the substrate, then filled with a layer of dielectric material. Chemical mechanical polishing (CMP) is then performed until the top of the conductive layer is exposed. This leaves dielectric spacers over the source/drain lines and conductive material between the dielectric spacers. Word lines are then formed over the conductive material and the dielectric spacers. As an alternative, instead of using a conductive layer, a sacrificial layer is used that is removed after the CMP step. After removing the sacrificial portions, the word lines are formed. In both cases, dielectric spacers reduce gate/drain capacitance and the distance from substrate to gate is held constant across the channel.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: November 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Gowrishankar L. G. Chindalore, Laureen H. Parker
  • Patent number: 7838420
    Abstract: A packaged semiconductor device includes an interconnect layer over a first side of a polymer layer, a semiconductor device surrounded on at least three sides by the polymer layer and coupled to the interconnect layer, a first conductive element over a second side of the polymer layer, wherein the second side is opposite the first side, and a connector block within the polymer layer. The connector block has at least one electrical path extending from a first surface of the connector block to a second surface of the connector block. The at least one electrical path electrically couples the interconnect layer to the first conductive element. A method of forming the packaged semiconductor device is also described.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jinbang Tang, Darrel R. Frear, William H. Lytle
  • Patent number: 7838363
    Abstract: A method forms a split gate memory cell by providing a semiconductor substrate and forming an overlying select gate. The select gate has a predetermined height and is electrically insulated from the semiconductor substrate. A charge storing layer is subsequently formed overlying and adjacent to the select gate. A control gate is subsequently formed adjacent to and separated from the select gate by the charge storing layer. The charge storing layer is also positioned between the control gate and the semiconductor substrate. The control gate initially has a height greater than the predetermined height of the select gate. The control gate is recessed to a control gate height that is less than the predetermined height of the select gate. A source and a drain are formed in the semiconductor substrate.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert F. Steimle, Gowrishankar L. Chindalore, Matthew T. Herrick
  • Patent number: 7827336
    Abstract: Two integrated circuit die each having a processing core and on-board memory are interconnected and packaged together to form a multi-chip module. The first die is considered primary and the second die is considered secondary are connected through an interposer. The first and second die may be the same design and thus have the same resources such as peripherals and memory and preferably have a common system interconnect protocol. The core of the second die is disabled or at least placed in a reduced power mode. The first die includes minimal circuit for interconnecting to the second die. The second die has some required interface circuitry and an address translator. The result is that the core of the first die can perform transactions with the memory and other resources of the second integrated circuit as if the memory and other resources were on the first die.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 2, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gary L. Miller, Ronald W. Stence
  • Patent number: 7820491
    Abstract: A semiconductor device has a semiconductor substrate that in turn has a top semiconductor layer portion and a major supporting portion under the top semiconductor layer portion. An interconnect layer is over the semiconductor layer. A memory array is in a portion of the top semiconductor layer portion and a portion of the interconnect layer. The memory is erased by removing at least a portion of the major supporting portion and, after the step of removing, applying light to the memory array from a side opposite the interconnect layer. The result is that the memory array receives light from the backside and is erased.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 26, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Leo Mathew, Ramachandran Muralidhar, Bruce E. White
  • Patent number: 7816948
    Abstract: A voltage translator having an input which receives an input signal and an output which provides a level shifted output signal includes a first inverter having an input coupled to receive the input signal, a second inverter having an input coupled to an output of the first inverter, a third inverter having an input coupled to an output of the second inverter, a fourth inverter having an input coupled to receive the input signal and an output coupled to an output of the third inverter, a fifth inverter having an input coupled to an output of the fourth inverter and having an output coupled to the input of the third inverter, and a sixth inverter having an input coupled to the output of the fifth inverter and an output coupled to the output of the voltage translator. The second and fourth inverters are coupled to a calibration voltage supply terminal.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: October 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Hector Sanchez
  • Patent number: 7817387
    Abstract: An electrostatic discharge (ESD) protected circuit is coupled to a power supply voltage rail and includes a multiple independent gate field effect transistor (MIGFET), a pre-driver, and a hot gate bias circuit. The MIGFET has a source/drain path coupled between an output pad and the power supply voltage rail and has a first gate terminal and a second gate terminal. The pre-driver circuit has an output. The hot gate bias circuit is coupled to the first gate terminal of the MIGFET, and the output of the pre-driver circuit is coupled to the second gate terminal of the MIGFET. The hot gate bias circuit is configured to apply a bias voltage to the first gate terminal of the MIGFET during an ESD event that increases the breakdown voltage of the MIGFET so as to better withstand the ESD event.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: October 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael G. Khazhinsky, Leo Mathew, James W. Miller
  • Patent number: 7816211
    Abstract: A semiconductor device is made on a semiconductor substrate. A first insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a high voltage transistor in a first region of the semiconductor substrate. After the first insulating layer is formed, a second insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a non-volatile memory transistor in a second region of the substrate. After the second insulating layer is formed, a third insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a logic transistor in a third region of the substrate.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar