Patents Represented by Attorney John N. Greaves
  • Patent number: 8211771
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: July 3, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung
  • Patent number: 8164169
    Abstract: An embodiment of the present invention is a technique to fabricate a cover assembly. A cover has a base plate and sidewalls attached to perimeter of the base plate. The sidewalls have a height. A plurality of devices is attached to underside of the base plate. The devices have length corresponding to the height such that the devices are sealed within the cover when the cover is attached to a surface.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: April 24, 2012
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Tony A. Opheim
  • Patent number: 8115235
    Abstract: A quantum well (QW) layer is provided in a semiconductive device. The QW layer is provided with a beryllium-doped halo layer in a barrier structure below the QW layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Titash Rakshit, Mantu Hudait, Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung
  • Patent number: 8110920
    Abstract: A mounting substrate for a processor includes a die side and a land side with a processor footprint configured on the die side. The processor footprint is coupled to at least one processor interconnect and a microelectronic die is embedded in the mounting substrate. The microelectronic die is coupled to the processor interconnect and communication between a processor to be installed on the processor footprint is in a rate between 10 Gb/s and 1 Tb/s.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: February 7, 2012
    Assignee: Intel Corporation
    Inventors: Sriram Dattaguru, Lesley A. Polka Wood, Yoshihiro Tomita, Kinya Ichikawa, Robert L. Sankman
  • Patent number: 8093105
    Abstract: An underfill composition is formulated to increase the surface tension thereof for use in capillary underfilling of an integrated circuit die that is coupled to a mounting substrate. A method includes mixing a surface tension-increasing additive with a bulk polymer and a hardener and allowing the underfill composition to flow between the integrated circuit die and the mounting substrate. An article is achieved by the method. The article can be assembled into a computing system.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 10, 2012
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Saikumar Jayaraman
  • Patent number: 8093717
    Abstract: A chip package includes a microstrip spacer disposed between a first die and a second die. The microstrip spacer includes electrically conductive planes that are ground planes for at least one of the first die and the second die. A method includes operating the first die at a first clock speed and operating the second die at a second clock speed. A system includes a chip package with a microstrip spacer and a system housing.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 10, 2012
    Assignee: Intel Corporation
    Inventors: Joan Rey V. Buot, Christian Orias
  • Patent number: 8084282
    Abstract: Wafer-level bonding of the hybrid laser portion of a silicon photonics platform is done by forming a weakened level in a semiconductive pillar that supports laser-active layers by ion implantation into the semiconductive pillar without penetrating the laser-active layers, and by separating the laser-active layers from the semiconductive pillar by cracking the weakened level by an epitaxial lift-off processes.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: December 27, 2011
    Assignee: Intel Corporation
    Inventors: John Heck, Richard Jones, Matthew N. Sysak
  • Patent number: 8080870
    Abstract: A back-side lamination (BSL) is applied after thinning a microelectronic die. The BSL is configured to be a thermal-expansion complementary structure to a metal wiring interconnect layout that is disposed on the active side of the microelectronic die.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 20, 2011
    Assignee: Intel Corporation
    Inventor: Chuan Hu
  • Patent number: 8063447
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung
  • Patent number: 8026736
    Abstract: A charged device model (CDM) electrostatic discharge (ESD) testing is carried out at wafer level. Wafer CDM pulses are repeatedly applied and monitored. The wafer CDM (WCDM) pulses are accomplished with a probe-mounted printed-circuit board and a high-frequency transformer that captures fast CDM pulses. Modeling of CDM and WCDM in the time and frequency domain illustrates the dominant effects, and shows that WCDM can reproduce all the major phenomena of package-level CDM testing.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 27, 2011
    Assignee: Intel Corporation
    Inventors: Timothy J. Maloney, Bruce Chou
  • Patent number: 8007727
    Abstract: A multiple-gate field-effect transistor includes a fluid in a top gate, two lateral gates, and a bottom gate. The multiple-gate field-effect transistor also includes a patterned depletion zone and a virtual depletion zone that has a lesser width than the patterned depletion zone. The virtual depletion zone width creates a virtual semiconductor nanowire that is lesser in width than the patterned depletion zone.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: August 30, 2011
    Assignee: Intel Corporation
    Inventors: Gil Shalev, Amihood Doron, Ariel Cohen
  • Patent number: 7996989
    Abstract: Embodiments of the invention includes a heat dissipating device. The heat dissipating device includes a main body having a surface, wherein the surface is plated or coated with at least two different metals to form a design effective for bonding to solder and for adhering to polymer in a polymer solder hybrid. The heat dissipating device also includes surface perturbations.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: August 16, 2011
    Assignee: Intel Corporation
    Inventors: Ashay A. Dani, Sabina J. Houle, Christopher L. Rumer, Thomas J Fitzgerald
  • Patent number: 7989916
    Abstract: An article includes a top electrode that is embedded in a solder mask. An article includes a top electrode that is on a core structure. A process of forming the top electrode includes reducing the solder mask thickness and forming the top electrode on the reduced-thickness solder mask. A process of forming the top electrode includes forming the top electrode over a high-K dielectric that is in a patterned portion of the core structure.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 2, 2011
    Assignee: Intel Corporation
    Inventors: John J. Tang, Xiang Yin Zeng, Jiangqi He, Ding Hai
  • Patent number: 7981756
    Abstract: A process of forming a semiconductive capacitor device for a memory circuit includes forming a first capacitor cell recess and a second capacitor cell recess that are spaced apart by a capacitor cell boundary of a first height. The process includes lowering the first height of the capacitor cell boundary to a second height. A common plate capacitor bridges between the first recess and the second recess over the boundary above the second height and below the first height.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 19, 2011
    Assignee: Intel Corporation
    Inventors: Nick Lindert, Brian Doyle, Dinesh Somasekhar, Christopher J. Jezewski, Swaminathan Sivakumar, Kevin Zhang, Stephen Wu
  • Patent number: 7964447
    Abstract: A carbon nanotube (CNT) array is patterned on a substrate. The substrate can be a microelectronic die or a heat sink for a die. The patterned CNT array is patterned by using a patterned catalyst on the substrate to form the CNT array by growing. The patterned CNT array can also be patterned by using a patterned mask on the substrate to form the CNT array by growing. A computing system that uses the CNT array for heat transfer from the die is also used.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 21, 2011
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Thomas S. Dory, James G. Maveety, Edward Prack, Unnikrishnan Vadakkanmaruveedu
  • Patent number: 7960831
    Abstract: A ball-limiting metallurgy (BLM) stack is provided for an electrical device. The BLM stack resists tin migration toward the metallization of the device. A solder system is also provided that includes a eutectic-Pb solder on a substrate that is mated to a high-Pb solder, and that withstands higher temperature reflows and other higher temperature processes.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: June 14, 2011
    Assignee: Intel Corporation
    Inventors: Fay Hua, Albert T. Wu, Kevin Jeng, Krishna Seshan
  • Patent number: 7955900
    Abstract: Some embodiments of the invention include a coated thermal interface to bond a die with a heat spreader. The coated thermal interface may be used to bond the die with the heat spreader without flux. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 7, 2011
    Assignee: Intel Corporation
    Inventors: Susheel G. Jadhav, Carl Deppisch
  • Patent number: 7948090
    Abstract: An underfill composition is formulated to increase the surface tension thereof for use in capillary underfilling of an integrated circuit die that is coupled to a mounting substrate. A method includes mixing a surface tension-increasing additive with a bulk polymer and a hardener and allowing the underfill composition to flow between the integrated circuit die and the mounting substrate. An article is achieved by the method. The article can be assembled into a computing system.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 24, 2011
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Saikumar Jayaraman
  • Patent number: 7888183
    Abstract: A method and apparatus provide an integrated circuit package with improved heat dissipation and easier fabrication. The integrated circuit package includes a thinned semiconductor die attached to a heat spreader using a thermally conductive material. The thinned die reduces the thermal resistance of the die/heat spreader combination to improve heat extraction from the die as well as eliminating processing steps in fabrication. Additionally, the thinned die becomes more compliant as it takes on the thermal/mechanical properties of the heat spreader to reduce stress-induced cracking of the die.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: February 15, 2011
    Assignee: Intel Corporation
    Inventors: Cheng-Yi Liu, Johanna Swan, Steven Towle, Anna George, legal representative, Chuan Hu
  • Patent number: 7884695
    Abstract: A low-resistance inductor is made from a plurality of first inter-abutting insulated electrode coil sub-segments that is coupled to a plurality of second intra-abutting insulated electrode coil sub-segments that are contiguous to the plurality of first intra-abutting coil sub-segments. The first plurality and the second plurality form an helical inductor unit cell. A process of forming the low-resistance inductor includes heat curing. A system includes a low-resistance inductor and a mounting substrate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 8, 2011
    Assignee: Intel Corporation
    Inventors: Larry E. Mosley, Clive R. Hendricks