Patents Represented by Attorney, Agent or Law Firm Joseph Bach
  • Patent number: 8099330
    Abstract: A rider signal is transmitted over programming signal. The rider signal is stored in a rider buffer and includes merchandise ordering data. When a user wishes to order the merchandise, the system establish a channel of communication with an ordering center and places an order according to the data in the rider buffer. The system is particularly useful for implementation in car audio systems and personal computers.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: January 17, 2012
    Inventor: Joseph Bach
  • Patent number: 8084683
    Abstract: Solar cells fabricated without gasification of metallurgical-grade silicon. The substrates are prepared by: melting metallurgical grade silicon in a furnace; solidifying the melted metallurgical grade silicon into an ingot; slicing the ingot to obtain a plurality of wafers; polishing and cleaning each wafer; depositing aluminum layer on backside of each wafer; depositing a layer of hydrogenated silicon nitride on front surface of each wafer; annealing the wafers at elevated temperature; removing the hydrogenated silicon nitride; and, removing the aluminum layer. The front surface may be textured prior to forming the solar cell. The solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.
    Type: Grant
    Filed: May 14, 2011
    Date of Patent: December 27, 2011
    Inventor: Ashok Sinha
  • Patent number: 7970264
    Abstract: Water dispensers are disclosed which include a Sabbath function. When activating the Sabbath function, water refill of the hot water reservoir tank is prevented and the heating of the water in the hot reservoir tank is modified to provide a constant heating at a less than boiling temperature.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: June 28, 2011
    Inventors: Ilan Grossbach, Joseph Bach
  • Patent number: 7960644
    Abstract: Methods for fabricating solar cells without the need to perform gasification of metallurgical-grade silicon are disclosed. Consequently, the costs and health and environmental hazards involved in fabricating the solar or silicon grade silicon are being avoided. A solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 14, 2011
    Assignee: Sunpreme, Ltd.
    Inventor: Ashok Sinha
  • Patent number: 7956283
    Abstract: Methods for fabricating solar cells without the need to perform gasification of metallurgical-grade silicon are disclosed. Consequently, the costs and health and environmental hazards involved in fabricating the solar or silicon grade silicon are being avoided. A solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 7, 2011
    Assignee: Sunpreme, Ltd.
    Inventor: Ashok Sinha
  • Patent number: 7951640
    Abstract: Solar cells fabricated without gasification of metallurgical-grade silicon. The substrates are prepared by: melting metallurgical grade silicon in a furnace; solidifying the melted metallurgical grade silicon into an ingot; slicing the ingot to obtain a plurality of wafers; polishing and cleaning each wafer; depositing aluminum layer on backside of each wafer; depositing a layer of hydrogenated silicon nitride on front surface of each wafer; annealing the wafers at elevated temperature; removing the hydrogenated silicon nitride; and, removing the aluminum layer. The front surface may be textured prior to forming the solar cell. The solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 31, 2011
    Assignee: Sunpreme, Ltd.
    Inventor: Ashok Sinha
  • Patent number: 7672576
    Abstract: Water dispensers are disclosed which include a Sabbath function. When activating the Sabbath function, water refill of the hot water reservoir tank is prevented and the heating of the water in the hot reservoir tank is modified to provide a constant heating at a less than boiling temperature.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: March 2, 2010
    Inventors: Ilan Grossbach, Joseph Bach
  • Patent number: 6905542
    Abstract: A waveguide structure and method of fabricating the same, the method comprising forming a first graded layer on a substrate, wherein the first graded layer comprises a first and a second optical material, and a lattice constant adjusting material, wherein the concentration of the second optical material increases with the height of the first graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material; and forming a second graded layer, the second graded layer comprising the first and second optical materials, and a lattice constant adjusting material, wherein the concentration of the second optical material decreases with the height of the second graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 14, 2005
    Inventors: Arkadii V. Samoilov, Dean E. Berlin
  • Patent number: 6905800
    Abstract: A substrate processing method comprises providing a substrate 105 comprising etch resistant material 210 in a process zone 155, such as an energized gas zone in a process chamber 110. The etch resistant material 210 may comprise a resist material 230 over mask material 240. The process may further comprise removing the etch resistant material 210, such as the resist material 230, in the process zone 155 before etching underlying layers.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: June 14, 2005
    Inventors: Stephen Yuen, Mohit Jain, Thorsten B. Lill
  • Patent number: 6836131
    Abstract: A combination cooling plate and micro-spray cooling system beneficial for use in testers of electrically stimulated integrated circuit chips is disclosed. The system includes a transparent heat spreader and micro-spray heads disposed about the heat spreader. The spray heads spray cooling liquid onto a periphery of said heat spreader so as to remove heat from the chip. Alternatively, and micro-spray heads are provided inside the cooling plate holder so as to spray cooling liquid inside the interior of the holder so that the holder is cooled. The holder is in physical contact with the heat spreader, so that as the holder is cooled by the spray, heat is removed from the heat spreader, and thereby from the chip.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: December 28, 2004
    Assignee: Credence Systems Corp.
    Inventors: Tahir Cader, Nathan Stoddard, Donald Tilton, Nader Pakdaman, Steven Kasapi
  • Patent number: 6835275
    Abstract: A process chamber 35 capable of processing a substrate 30 and monitoring a process conducted on the substrate 30, comprises a support 45, a gas inlet, a gas energizer, an exhaust 85, and a wall 38 having a recess 145 that is sized to reduce the deposition of process residues therein. A process monitoring system 35 may be used to monitoring a process that may be conducted on a substrate 30 in the process chamber 25 through the recess 145 in the wall 38.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: December 28, 2004
    Inventors: Michael N. Grimbergen, Xue-Yu Qian
  • Patent number: 6833079
    Abstract: The present disclosure pertains to our discovery of a method of etching a shaped cavity in a substrate, where the shaped cavity has a width that is at least as great as its depth. We have discovered that by varying the process chamber pressure during etching of the shaped cavity, we can control lateral etching of the shaped cavity, while allowing the removal of etch process byproducts from the shaped cavity during continued etching. The method of the invention can be used to etch shaped cavities having round or horizontal elliptical shapes. The method of the invention is particularly useful in the etching of buried cavities, where removal of etch byproducts from the cavity can be difficult.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: December 21, 2004
    Assignee: Applied Materials Inc.
    Inventor: Sara Giordani
  • Patent number: 6831742
    Abstract: A substrate processing apparatus 27 comprises a chamber 35 capable of processing a substrate 20, a radiation source 58 to provide a radiation, a radiation polarizer 59 adapted to polarize the radiation to one or more polarization angles that are selected in relation to an orientation 33 of a feature 25 being processed on the substrate 20, a radiation detector 54 to detect radiation reflected from the substrate 20 during processing and generate a signal, and a controller 100 to process the signal.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: December 14, 2004
    Assignee: Applied Materials, Inc
    Inventors: Zhifeng Sui, Hongqing Shan, Nils Johansson, Hamid Noorbakhsh, Yu Guan
  • Patent number: 6827869
    Abstract: The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: December 7, 2004
    Inventors: Dragan Podlesnik, Thorsten Lill, Jeff Chinn, Shaoher X. Pan, Anisul Khan, Maocheng Li, Yiqiong Wang
  • Patent number: 6829056
    Abstract: A substrate processing apparatus has a chamber having a substrate support, gas distributor, gas energizer, and gas exhaust port. A process monitor is provided to monitor features in a first region of the substrate and generate a corresponding first signal, and to monitor features in a second region of the substrate and generate a second signal. A chamber controller receives and evaluates the first and second signals, and operates the chamber in relation to the signals. For example, the chamber controller can select a process recipe depending upon the signal values. The chamber controller can also set a process parameter at a first level in a first processing sector and at a second level in a second processing sector. The apparatus provides a closed control loop to independently monitor and control processing of features at different regions of the substrate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: December 7, 2004
    Inventors: Michael Barnes, John Holland, Hongqing Shan, Bryan Y. Pu, Mohit Jain, Zhifeng Sui, Michael D. Armacost, Neil E. Hanson, Diana Xiaobing Ma, Ashok K. Sinha, Dan Maydan
  • Patent number: 6828811
    Abstract: A landing system is provided for accurate placing of collection optics in a microscope. In one example, a solid immersion lens (SIL) is used for light collection, and the landing system is operated to place the SIL in contact with an IC. A proximity sensor is used for determining the SIL's position with respect to the IC. The proximity sensor is attached to a z-motion stage. During the placement procedure, the navigation is performed in steps and at each step the compression of the SIL is measured relative to its uncompressed state. When a measured compression exceeds a preset threshold, a SIL landing is recognized. In one example, after a landing is recognized, a further compression is imparted to the SIL in order to place the SIL in a focusing distance to the objective lens.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: December 7, 2004
    Assignee: Credence Systems Corporation
    Inventors: John Hanson, Jonathan Frank, Dario Meluzzi, Daniel M. Cotton
  • Patent number: 6824813
    Abstract: A substrate processing apparatus comprises a chamber 28 capable of processing a substrate 20. A radiation source 58 provides radiation that is at least partially reflected from the substrate in the chamber. A radiation detector 62 is provided to detect the reflected radiation and generate a signal. A controller 100 is adapted to receive the signal and determine a property of the substrate 20 in situ during processing, before an onset of during or after processing of a material on the substrate 20.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: November 30, 2004
    Assignee: Applied Materials Inc
    Inventors: Thorsten B. Lill, Michael N. Grimbergen, Jitske Trevor, Wei-Nan Jiang, Jeffrey Chinn
  • Patent number: 6825618
    Abstract: Apparatus and method for inductively coupling electrical power to a plasma in a semiconductor process chamber. In a first aspect, an array of wedge-shaped induction coils are distributed around a circle. The sides of adjacent coils are parallel, thereby enhancing the radial uniformity of the magnetic field produced by the array. In a second aspect, electrostatic coupling between the induction coils and the plasma is minimized by connecting each induction coil to the power supply so that the turn of wire of the coil which is nearest to the plasma is near electrical ground potential. In one embodiment, the hot end of one coil is connected to the unbalanced output of an RF power supply, and the hot end of the other coil is connected to electrical ground through a capacitor which resonates with the latter coil at the frequency of the RF power supply.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 30, 2004
    Inventors: Bryan Y. Pu, Hongching Shan, Claes Bjorkman, Kenny Doan, Mike Welch, Richard Raymond Mett
  • Patent number: 6821907
    Abstract: A method and apparatus for etching a magnetic memory cell stack are described. More particularly, HCl is used as a main etchant gas for etching a magnetic memory cell stack. HCl is used in part to reduce corrosion and improve selectivity. Additionally, use of an amorphous carbon or hydrocarbon based polymer resin for a hard mask is described, as well as a post-etch passivation with a water rinse, a water vapor plasma treatment or an ammonia plasma treatment. Moreover, in an embodiment, a diffusion barrier layer dispose most of the magnetic memory cell stack is etched with hydrogen and fluorine containing gas in a separate process chambers.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 23, 2004
    Inventors: Jeng H. Hwang, Guangxiang Jin, Xiaoyi Chen
  • Patent number: 6818096
    Abstract: A plasma reactor electrode, a method of making it, and a plasma reaction chamber employing the inventive electrode, wherein the electrode is configured to provide superior thermal conductivity characteristics. In the inventive electrode, first and second plates are connected by pins. In one embodiment, the pins, and the first and second plates are made of the same material, such as aluminum. The connection of the pins through the first and second plates provides superior thermal conductivity between the first and second plates. A dielectric cover, which may be made of ceramic or quartz, may be added below the lower plate. To form a showerhead assembly, holes are formed in the lower plate, and also in the dielectric cover, in alignment with a plenum chamber, to provide appropriate inlet for process gas into the chamber.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: November 16, 2004
    Inventors: Michael Barnes, David Palagashvili