Patents Represented by Attorney, Agent or Law Firm Joseph Giordano
  • Patent number: 6768963
    Abstract: In a geo-location system, the location of an object in space is determined by transmitting polarized signals towards the object. To prevent erroneous determinations due to signals which reach the object after reflection the transmitted signals are polarized. The receiver at the object includes a cross-polarization discriminator and accepts only directly transmitted signals and not reflected signals which have been cross-polarized by the reflection. The transmitted signals may be ultra-wide band signals which can penetrate into buildings. An object whose location can thus be determined can also transmit polarized signals to another object which can not be reached by signals from the original transmitter. Further the ultra-wide band signals may utilize transmission in discontinuous frequency bands to avoid interference with existing systems.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: July 27, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Joseph C. Liberti, Jr., Anthony A. Triolo
  • Patent number: 6766114
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6760549
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757496
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757497
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757495
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6754450
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 22, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6754449
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 22, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6754847
    Abstract: Methods and systems are provided for monitoring a loosely coupled system, such as a web-based system and a business-to-business (B2B) system. In the case of a web-based system, exchanges between a web client and a web server may be monitored to determine quality and performance of the web-based system. The exchanges may include objects and attributes communicated from the web server to the web client. The exchanges may also include information about actions performed on objects as a user navigates through web pages displayed by the web client. For example, when the user selects a hyperlink, the monitoring system may recognize the hyperlink as an action. Accordingly, the actions along with the objects and their associated attributes may be recorded. The objects and their associated attributes may then be retrieved from the web server and the recorded actions may be played back against the retrieved objects based on the recorded attributes and the retrieved attributes.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: June 22, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Siddhartha Ramanlal Dalal, Ashish Jain, Michael James Long, Gardner C. Patton, Manish Ramesh Rathi, James Edward Appenzeller
  • Patent number: 6748233
    Abstract: A mobile system capable of proactively predicting characteristics for optimal communication among mobile nodes comprises a network controller and adaptive predictive mobile nodes. The adaptive predictive mobile nodes contain a position location technology element, a database containing information on factors affecting radio propagation, and a prediction processor. To provide energy efficient power control and routing for a communication, the adaptive predictive mobile node determines its current and predicted future position and the current and future predicted positions of other nodes in the network. Based on the information obtained, the adaptive predictive node executes a set of prediction capabilities in the prediction processor. After executing these capabilities, the adaptive predictive node identifies the advantaged location, power level, transmission parameters, communication time and route for communications between nodes.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: June 8, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Hamilton W. Arnold, Daniel M. Devasirvatham
  • Patent number: 6738815
    Abstract: Methods and systems provide a mobile workforce remote access to legacy systems utilizing a wireless communications network with a wireline network available as a backup network. This system includes portable personal computers in communication with the wireless or wireline communications network, protocol servers for receiving and forwarding messages to and from the portable personal computers, and an interface in communications with the protocol servers and legacy systems.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: May 18, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Robert H. Willis, Jr., David R. Jean, William L. Harris
  • Patent number: 6724859
    Abstract: A method for determining the make up of a subscriber loop via improved time-domain reflectometry techniques by analyzing the echo responses generated by transmittal of pulses onto the subscriber loop. In the method discontinuities along a loop are identified sequentially and in a step-by-step fashion by comparing the measured waveform to suitable waveforms generated on the basis of a hypothesized topology. Once the generated waveform that best matches the measured data has been found and a discontinuity identified, the waveform generated in correspondence of the loop topology identified so far is subtracted from the measured data to produce a compensated waveform, which, is more suitable for detection and location of the next echo.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 20, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventor: Stefano Galli
  • Patent number: 6708036
    Abstract: Methods and systems are provided for adjusting sectors across coverage cells using base stations interconnected by a packet network. A plurality of wireless devices monitor the pilot channel signal strength of their respective serving cell. The serving cells then collect measurements from the wireless devices and calculate the boundaries of their respective coverage areas. The serving cells then transmit their calculations to their neighboringing cells. Upon receipt, the neighboring cells use the calculations to adjust the coverage of their sectors.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: March 16, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Paul Proctor, Paul G. Zablocky
  • Patent number: 6694011
    Abstract: Reliably detecting voiceband signaling tones at a subscriber or network device in the presence of near-end and far-end speech occurs by eliminating, rather than balancing, near-end talk-off and by separately handling far-end talkoff and near-end talkdown. A tone detector is placed on the receive path of the device. One or more frequencies that comprise the tone to be detected by the tone detector are attenuated/removed from the near-end speech present on the send path of the device thereby preventing the near-end speech from talking-off the tone detector. Near-end talkdown and far-end talkoff are eliminated by utilizing two separate signal-to-guard ratios within the tone detector: a large signal-to-guard ratio to combat the effects of the far-end talkoff and a small signal-to-guard ratio to combat the effects of the near-end talkdown. The tone detector is switched between the two signal-to-guard ratios by predicting whether the near-end is speaking.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: February 17, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventor: Stanley Pietrowicz
  • Patent number: 6687574
    Abstract: Utility failures are automatically detected and potential causes for these failures are automatically located and identified without having to physically search a utility provider's network. Detection systems capable of monitoring utility status are located at each, or a subset, of the customer premises serviced by a utility provider. A monitoring system, capable of correlating the geographical location of the detection systems with the geographical location of the equipment that comprises the utility provider's network, is located at a utility provider and interconnects with the detection systems through a communications network. The monitoring system queries the detection systems to determine utility status and to subsequently locate an outage and deduce a possible cause for the outage. Detection systems can also be configured to automatically contact the monitoring system to report utility status.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: February 3, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Stanley Pietrowicz, Frederick Link, Douglas Allport, Hamilton Rothrock
  • Patent number: 6684247
    Abstract: Methods and systems are provided for identifying congestion and anomalies at individual nodes, links, and segments in a network. In accordance with an embodiment of the invention, a monitoring station determines for each link in the network a statistical model based on a harmonic analysis. The monitoring station collects from each link metric data. The monitoring station then selects for each link a model that includes one or more harmonic components. By estimating parameters of the harmonic components, the monitoring station then captures the periodicity of the collected metric data in the harmonic components of the model. The monitoring station uses the model to estimate the state of the network from which estimated values of the metric data are determined. The monitoring station then determines whether congestion or anomalies exist in the links based on the estimated metrics.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: January 27, 2004
    Assignee: Telcordia Technologies, Inc.
    Inventors: Elisa M. Santos, Samaradasa Weerahandi, Ricardo Martija
  • Patent number: 6674558
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the single-sideband modulated header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can be overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of~the network elements.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: January 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6657757
    Abstract: As optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and the data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6654431
    Abstract: A highly modular PACS-based system that combines the advantages of Optical Frequency Division Multiplexing (OFDM) and Personal Access Communication System (PACS) with Time Division Multiple Access (TDMA) technology. The system is arranged to support high-speed (higher than the 32 kbps of PACS) wireless access services to fixed and mobile users. For example, nominal user data rates of 32-to-356 kbps are attainable, and ever the higher speed of 768 kbps is possible for short ranges.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 25, 2003
    Assignee: Telcordia Technologies, Inc.
    Inventors: Melbourne Barton, Kuok-Shoong Daniel Wong
  • Patent number: 6633614
    Abstract: A highly modular PACS-based system that combines the advantages of Optical Frequency Division Multiplexing (OFDM) and Personal Access Communication System (PACS) with Time Division Multiple Access (TDMA) technology. The system is arranged to support high-speed (higher than the 32 kbps of PACS) wireless access services to fixed and mobile users. For example, nominal user data rates of 32-to-356 kbps are attainable, and ever the higher speed of 768 kbps is possible for short ranges.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: October 14, 2003
    Assignee: Telcordia Technologies, Inc.
    Inventors: Melbourne Barton, Kouk-Shoong Daniel Wong