Patents Represented by Attorney Joseph J. Allocca
  • Patent number: 5182248
    Abstract: A novel, high porosity, high surface area catalyst is disclosed which is useful in wax isomerization processes, especially for the production of high viscosity index, low pour point lubricating oil base stocks or blending stocks. The catalyst contains a catalytically active metal component selected from the group consisting of Group VIB and Group VIII metals, and mixtures thereof, preferably Group VIII metals, and mixtures thereof, more preferably noble Group VIII metals and mixtures thereof, most preferably platinum which catalytically active metal component is present in the range of about 0.01 to 5.0 wt. %, and a fluorine content in the range of about 0.01 to about 10.0. The catalyst employs a refractory metal oxide support material, one preferably predominantly (i.e., at least 50 wt. %) alumina, most preferably completely alumina, e.g., gamma or eta alumina. The finished catalyst has a porosity, expressed in terms of pore volume, of at least about 0.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: January 26, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David H. Dumfries, Arthur H. Neal, Kenneth L. Riley
  • Patent number: 5182024
    Abstract: Hydrocarbon solvents used or the dewaxing and/or deasphalting of oils can be recovered by the selective permeation of said solvents through an interfacially polymerized membrane under reverse osmosis conditions.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: January 26, 1993
    Assignee: Exxon Research and Engineering Company
    Inventor: Tan-Jen Chen
  • Patent number: 5173175
    Abstract: This invention is directed to a feed injector for a fluid catalytic cracking reaction zone, which feed injector provides improved oil atomization and dispersion. The injector comprises a straight-pass conduit section, in which a feed oil and steam are premixed, and a terminal section, where the oil is atomized and dispersed by a generally fan-shaped distributor. The feed injector produces a substantially flat spray pattern across the direction of catalyst flow in the catalyst/oil contacting section of the catalytic cracking reaction zone. Improved product yield and lower coke and light gas yields are obtained.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: December 22, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Todd R. Steffens, Stephen D. Challis
  • Patent number: 5173191
    Abstract: Interfacially polymerized, crosslinked membranes on microporous, organic solvent resistant ultrafiltration membrane backing are useful for the separation of organic mixtures under reverse osmosis conditions. The membranes are prepared by depositing an aqueous (or conversely non-aqueous) solution of a first component on the microporous backing, draining off the excess quantity of this first solution and then applying a second component in the form of a non-aqueous (or conversely aqueous) solution. The two components interact and polymerize at the interface between the aqueous phase and the non-aqueous phase to produce a highly crosslinked thin polymer layer on the microporous ultrafiltration support backing layer.
    Type: Grant
    Filed: October 5, 1989
    Date of Patent: December 22, 1992
    Assignee: Exxon Research and Engineering Company
    Inventor: Laura E. Black
  • Patent number: 5173172
    Abstract: Hard asphalts exhibiting acceptable penetration and low temperature properties can be produced from vacuum residua from which such hard asphalts are not normally obtainable via typical vacuum distillate such as that derived from Arab Light crude and/or feeds substantially comprising Arab Light-type crudes by ultrafiltering the residua through a membrane.
    Type: Grant
    Filed: August 19, 1991
    Date of Patent: December 22, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Brian B. Adams, John A. Thompson
  • Patent number: 5169530
    Abstract: Hollow fiber membrane separation elements are improved with respect to fluid flow and contacting by dividing the bundle of hollow membrane fibers in the element into discrete sub-bundles by use of baffles in the module.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: December 8, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert C. Schucker, Charles P. Darnell, Mahmoud M. Hafez
  • Patent number: 5167773
    Abstract: A distillation tower (1) has a plurality of liquid sidestream lines (5, 6, 7) and a multi-stage sidestream stripper (13) which includes a respective stripping section (14, 15, 16) for each sidestream line housed in a common, upright, cylindrical shell (28) which allows vapor to pass freely from each stage to the one above. Partial vaporization of each sidestream is achieved by applying a vacuum to the top of the stripper shell (point 21) and/or introducing strip gas at the bottom (point 20). Because the vapor passes serially through the stripping sections from the bottom of the stripper (13) to the top, the need to supply strip gas separately to the stripping sections and/or apply vacuum individually is avoided. The separation between the sidestream products is improved by including, in each stage, a rectification zone (22, 23, 24) positioned above the stripping section.
    Type: Grant
    Filed: January 16, 1990
    Date of Patent: December 1, 1992
    Assignee: Exxon Research and Engineering Co.
    Inventors: James D. Eagan, Adrianus Welmers
  • Patent number: 5167847
    Abstract: The present invention is directed to the production of a formulated transformer oil by the process involving fractionating the product coming from a hydrocracker to produce a distillate boiling in the transformer oil range, dewaxing the fraction, optionally hydrofinishing the fraction and adding to said fraction an effective amount of anti-oxidant and/or pour point depressant. The formulated transformer oil produced by this process has properties equivalent to those of formulated naphthenic transformer oil.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: December 1, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Christopher Olavesen, Kevin D. Butler
  • Patent number: 5158671
    Abstract: A method is described for rendering total liquid product hydroisomerates daylight stable and improving their oxidation stability, which method involves treating the hydroisomerate total liquid product with a Group VIII metal on refractory metal oxide catalyst or Group VIII metal on halogenated refractory metal oxide catalyst under mild conditions, which conditions are a temperature in the range of 170.degree. to 270.degree. C., a pressure in the range of 300 to 1500 psi H.sub.2, 0.25 to 10 v/v/hr and 500 to 10,000 SCF/B,H.sub.2.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: October 27, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Donald T. Eadie, John M. MacDonald, Glen P. Hamner
  • Patent number: 5152889
    Abstract: A wash liquid distributor is described for applying liquid uniformly across a filter cake on a filter surface providing effective washing and exhibiting resistance to clogging and fouling.
    Type: Grant
    Filed: December 4, 1991
    Date of Patent: October 6, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Rudolph R. Savory, James D. Eagan
  • Patent number: 5133867
    Abstract: Solvents comprising C.sub.3, C.sub.4, C.sub.5 and C.sub.6 aliphatic hydrocarbons (i.e. propane, propylene, butane, butylene, pentane, cyclopentane, pentene, hexane, cyclohexane, hexene and their isomers) and mixtures thereof, preferably C.sub.3 and C.sub.4 hydrocarbons and mixtures thereof are recovered from hydrocarbon oils in the liquid phase by the reverse osmosis permeation of said solvent through a polyimide reverse osmosis membrane at low temperature.
    Type: Grant
    Filed: June 27, 1991
    Date of Patent: July 28, 1992
    Assignee: Exxon Research and Engineering Company
    Inventor: Lucie Y. LaFreniere
  • Patent number: 5130017
    Abstract: The present invention is directed to a multi-block polymeric material comprising a first amide acid prepolymer, made by combining (A) a diamine with (B) a dianhydride or its corresponding tetraacid or diacid-diester in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1, chain extended with a second, different, compatible prepolymer selected from the group of prepolymers comprising (A) a dianhydride or its corresponding tetraacid or diacid-diester combined with a monomer selected from (B) epoxy, diisocyanate and polyester in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1.The present invention is also directed to membranes of the above recited multi-block polymeric materials, especially membranes comprising thin, dense films of said multi-block polymeric material deposited on a micro porous support layer producing a thin film composite membrane.
    Type: Grant
    Filed: December 6, 1990
    Date of Patent: July 14, 1992
    Assignee: Exxon Research and Engineering Company
    Inventor: Robert C. Schucker
  • Patent number: 5122258
    Abstract: Lube oils of increased VI are prepared by hydrotreating using bulk Ni/Mn/No or Cr/Ni/Mo sulfide catalysts prepared from ligated, e.g., ethylene diamine, metal complexes. In particular the Ni/Mn/Mo sulfide catalyst is prepared from the oxide, precursor with subsequent sulfiding while the Cr/Ni/Mo sulfide catalyst is prepared from the sulfide precursor in the presence of H.sub.2 S/H.sub.2.
    Type: Grant
    Filed: May 16, 1991
    Date of Patent: June 16, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Donald T. Eadie, Michael A. Fefer
  • Patent number: 5120900
    Abstract: Raffinate yield from solvent extraction is improved when the extract phase recovered from the solvent extraction process is subjected to a membrane separation step wherein a saturates/1-ring aromatics rich retentate is produced and a 2+ ring aromatics rich permeate are produced and the saturates/1-ring aromatic rich retentate phase is recycled to the solvent extraction process.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: June 9, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Tan-Jen Chen, James R. Sweet
  • Patent number: 5107056
    Abstract: Naphthenic hydrocarbons are separated from aliphatic rich hydrocarbon feeds comprising mixtures of naphthenes with paraffinic hydrocarbons by a membrane extraction process whereby the hydrocarbon feed is contacted with one face of a porous, non-selective partition barrier membrane while simultaneously contacting the other side of said membrane with a polar solvent such as ethylenediamine. The naphthenic hydrocarbon preferentially migrates through the porous membrane partition barrier in response to the polar solvent present on the permeate side of the barrier.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: April 21, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Tan-Jen Chen, James R. Sweet
  • Patent number: 5107058
    Abstract: Olefins are selectively separated from hydrocarbon feeds containing mixtures of olefins and paraffins by contacting said hydrocarbon feed mixture with one side of a micro-porous, non-selective partition barrier membrane while simultaneously passing, preferably in countercurrent flow, along the opposite side of said membrane a polar solvent. The olefin preferentially passes through said micro-porous non selective partition barrier in response to the polar solvent yielding a permeate enriched in olefin and a retentate enriched in paraffin as compared to the original feed stream.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: April 21, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Tan-Jen Chen, James R. Sweet
  • Patent number: 5107059
    Abstract: Non-normal, branched paraffins (isoparaffins) are separated from hydrocarbon feeds comprising mixtures of isoparaffins and normal paraffins by the procedure involving the steps of contacting the hydrocarbon feed with one face of a non-selective, microporous partition barrier membrane while simultaneously contacting the opposite face of said membrane, preferably in countercurrent flow, with a polar solvent. The isoparaffins in the feed selectively permeate across the porous partition barrier membrane in response to the polar solvent to the solvent side of the membrane whereby a permeate enriched in isoparaffins and a retentate of decreased isoparaffin content as compared to the feed are obtained.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: April 21, 1992
    Assignee: Exxon Research & Engineering Company
    Inventors: Tan-Jen Chen, James R. Sweet
  • Patent number: 5104532
    Abstract: The present invention is a flat stack permeator useful under dialysis, ultrafiltration, reverse osmosis, perstraction, pervaporation, etc. conditions. The permeator comprises a multitude of membrane layer alternately separated by feed-retentate spacers and permeate spacers. The layers are secured along their edges so as to define separate feed-retentate zones and permeate zone. The edge gluing is performed so that in any given layer the two parallel edges are secured, while on the layers immediately above and below the edge pairs which are secured are 90.degree. out of register with the previously mentioned pair of secured edges. In that way alternate feed retentate and permeate zones are defined which are perpendicular in flow one to the other.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: April 14, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: John A. Thompson, Manual E. Camano
  • Patent number: 5098570
    Abstract: The present invention is directed to a multi-block polymeric material comprising a urea prepolymer chain extended with a second compatible prepolymer selected from the group of prepolymers comprising (a) an (A) dianhydride or its corresponding tetraacid or diacid-diester combined with a monomer selected from (B) epoxy, diisocyanate, polyester, and diamine in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1, and (b) an (A) diamine combined with a monomer selected from (B) epoxy and dianhydride or its corresponding tetraacid or diacid-diester in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1, and mixtures thereof. The present invention is also directed to membranes of the above recited multi-block polymeric material, especially membranes comprising them, dense films of said multi-block polymeric material deposited on a microporous support layer producing a thin film composite membrane.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: March 24, 1992
    Assignee: Exxon Research and Engineering Company
    Inventor: Robert C. Schucker
  • Patent number: 5096592
    Abstract: The present invention is directed to a process for separating aromatic/non-aromatic mixtures a membrane comprised of a multi-block polymeric material comprising an ester prepolymer made by combining an (A) epoxy with a (B) dianhydride or its corresponding tetraacid or diacid-diester in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1, chain extended with a second, different compatible prepolymer selected from the group of prepolymers comprising (a) and (A) diisocyanate combined with a monomer selected from (B) epoxy, polyester, dianhydride or it corresponding tetraacid or diacid-diester, and diamine in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.1, (b) and (A) dianhydride or its corresponding tetraacid or diacid-diester combined with a monomer selected from (B) diisocyanate, polyester, and diamine in an A/B mole ratio ranging from about 2.0 to 1.05, preferably about 2.0 to 1.
    Type: Grant
    Filed: December 6, 1990
    Date of Patent: March 17, 1992
    Assignee: Exxon Research and Engineering Company
    Inventor: Robert C. Schucker