Patents Represented by Attorney, Agent or Law Firm Kathi Bean
  • Patent number: 6833079
    Abstract: The present disclosure pertains to our discovery of a method of etching a shaped cavity in a substrate, where the shaped cavity has a width that is at least as great as its depth. We have discovered that by varying the process chamber pressure during etching of the shaped cavity, we can control lateral etching of the shaped cavity, while allowing the removal of etch process byproducts from the shaped cavity during continued etching. The method of the invention can be used to etch shaped cavities having round or horizontal elliptical shapes. The method of the invention is particularly useful in the etching of buried cavities, where removal of etch byproducts from the cavity can be difficult.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: December 21, 2004
    Assignee: Applied Materials Inc.
    Inventor: Sara Giordani
  • Patent number: 6830950
    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: December 14, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey D. Chinn, Rolf A. Guenther, Michael B. Rattner, James A. Cooper, Toi Yue Becky Leung
  • Patent number: 6827869
    Abstract: The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: December 7, 2004
    Inventors: Dragan Podlesnik, Thorsten Lill, Jeff Chinn, Shaoher X. Pan, Anisul Khan, Maocheng Li, Yiqiong Wang
  • Patent number: 6777342
    Abstract: A method of etching a platinum electrode layer disposed on a substrate to produce a semiconductor device including a plurality of electrodes separated by a distance equal to or less than about 0.3 &mgr;m and having a platinum profile equal to or greater than about 85°. The method comprises heating the substrate to a temperature greater than about 150° C., and etching the platinum electrode layer by employing a high density inductively coupled plasma of an etchant gas comprising chlorine, argon and a gas selected from the group consisting of BCl3, HBr, and mixtures thereof. A semiconductor device having a substrate and a plurality of platinum electrodes supported by the substrate. The platinum electrodes have a dimension (e.g., a width) which include a value equal to or less than about 0.3 &mgr;m and a platinum profile equal to or greater than about 85°.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: August 17, 2004
    Inventor: Jeng H. Hwang
  • Patent number: 6770567
    Abstract: Contaminants are generated during etching processes for forming electrodes of storage capacitors for very high density future memory cells, such as ferroelectric random access memory (FeRAM) cells. These contaminants include significant quantities of noble metals, and in particular iridium and iridium compound particulates. In order to prevent undesirable iridium and iridium compound particulates from adversely affecting subsequent etching processes performed in the chamber, the plasma metal etch chamber is seasoned by exposing interior surfaces of the chamber to a seasoning plasma generated from a gas mixture comprising at least two gases selected from the group consisting of BCl3, HBr, and CF4. The chamber seasoning method of the invention is also applicable to etch processes involving other noble metals, such as platinum.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: August 3, 2004
    Inventors: Yong Deuk Ko, Se Jin Oh, Chan Ouk Jung, Jeng H. Hwang
  • Patent number: 6749770
    Abstract: A method of etching a platinum electrode layer disposed on a substrate to produce a semiconductor device including a plurality of platinum electrodes. The method comprises heating the substrate to a temperature greater than about 150° C., and etching the platinum electrode layer by employing a plasma of an etchant gas comprising nitrogen and a halogen (e.g. chlorine), and a gas selected from the group consisting of a noble gas (e.g. argon), BCl3, HBr, SiCl4 and mixtures thereof. The substrate may be heated in a reactor chamber having a dielectric window including a deposit-receiving surface having a surface finish comprising a peak-to-valley roughness height with an average height value of greater than about 1000 Å.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: June 15, 2004
    Inventors: Jeng H. Hwang, Chentsau Ying, Kang-Lie Chiang, Steve S. Y. Mak
  • Patent number: 6730561
    Abstract: A simple method of forming a cup capacitor is disclosed. The method typically involves only “dry” deposition and etching steps, allowing applicants' method to be performed in a single processing apparatus, if so desired.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: May 4, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Jeng H. Hwang, Guangxiang Jin
  • Patent number: 6709609
    Abstract: We have discovered a method of reducing the effect of material sputtered/etched during the preheating of a substrate. One embodiment of the method pertains to preheating a substrate which includes a metal-containing layer which is to be pattern etched subsequent to preheating. The method includes exposing the substrate to a preheating plasma which produces a deposit or residue during preheating which is more easily etched than said metal-containing layer during the subsequent plasma etching of said metal-containing layer.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 23, 2004
    Assignee: Applied Materials Inc.
    Inventors: Jeng H. Hwang, Xiaoyi Chen
  • Patent number: 6686293
    Abstract: Disclosed herein is a method of etching a trench in a silicon-containing dielectric material, in the absence of a trench etch-stop layer, where the silicon-containing dielectric material has a dielectric constant of about 4 or less. The method comprises exposing the dielectric material to a plasma generated from a source gas comprising a fluorine-containing etchant gas and an additive gas selected from the group consisting of carbon monoxide (CO), argon, and combinations thereof. A volumetric flow ratio of the additive gas to the fluorine-containing etchant gas is within the range of about 1.25:1 to about 20:1 (more typically, about 2.5:1 to about 20:1), depending on the particular fluorine-containing etchant gas used. The method provides good control over critical dimensions and etch profile during trench etching. Also disclosed herein is a method of forming a dual damascene structure, without the need for an intermediate etch stop layer.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: February 3, 2004
    Assignee: Applied Materials, Inc
    Inventors: Yunsang Kim, Kenny L. Doan, Claes H. Björkman, Hongqing Shan
  • Patent number: 6635573
    Abstract: We have discovered a method of detecting the approach of an endpoint during the etching of a material within a recess such as a trench or a contact via. The method provides a clear and distinct inflection endpoint signal, even for areas of a substrate containing isolated features. The method includes etching the material in the recess and using thin film interferometric endpoint detection to detect an endpoint of the etch process, where the interferometric incident light beam wavelength is tailored to the material being etched; the spot size of the substrate illuminated by the light beam is sufficient to provide adequate signal intensity from the material being etched; and the refractive index of the material being etched is sufficiently different from the refractive index of other materials contributing to reflected light from the substrate, that the combination of the light beam wavelength, the spot size, and the difference in refractive index provides a clear and distinct endpoint signal.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: October 21, 2003
    Assignee: Applied Materials, Inc
    Inventors: Wilfred Pau, Meihua Shen, Jeffrey D. Chinn
  • Patent number: 6620575
    Abstract: The present invention pertains to a method for depositing built-up structures on the surface of patterned masking material used for semiconductor device fabrication. Such built-up structures are useful in achieving critical dimensions in the fabricated device. The composition of the built-up structure to be fabricated is dependant upon the plasma etchants used during etching of underlying substrates and on the composition of the substrate material directly underlying the masking material.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: September 16, 2003
    Assignee: Applied Materials, Inc
    Inventors: Nam-Hun Kim, Jeffrey D. Chinn
  • Patent number: 6607675
    Abstract: We have discovered a method for plasma etching a carbon-containing silicon oxide film which provides excellent etch profile control, a rapid etch rate of the carbon-containing silicon oxide film, and high selectivity for etching the carbon-containing silicon oxide film preferentially to an overlying photoresist masking material. When the method of the invention is used, a higher carbon content in the carbon-containing silicon oxide film results in a faster etch rate, at least up to a carbon content of 20 atomic percent. In particular, the carbon-containing silicon oxide film is plasma etched using a plasma generated from a source gas comprising NH3 and CxFy. It is necessary to achieve the proper balance between the relative amounts of NH3 and CxFy in the plasma source gas in order to provide a balance between etch by-product polymer deposition and removal on various surfaces of the substrate being etched.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: August 19, 2003
    Assignee: Applied Materials Inc.
    Inventors: Chang Lin Hsieh, Hui Chen, Jie Yuan, Yan Ye
  • Patent number: 6599437
    Abstract: A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: July 29, 2003
    Assignee: Applied Materials Inc.
    Inventors: Oranna Yauw, Meihua Shen, Nicolas Gani, Jeffrey D. Chinn
  • Patent number: 6592707
    Abstract: A corrosion-resistant protective coating for an apparatus and method of processing a substrate in a chamber containing a plasma of a processing gas. The protective coating or sealant is used to line or coat inside surfaces of a reactor chamber that are exposed to corrosive processing gas that forms the plasma. The protective coating comprises at least one polymer resulting from a monomeric anaerobic chemical mixture having been cured in a vacuum in the absence of oxygen. The protective coating includes a major proportion of at least one methacrylate compound and a minor proportion of an activator compound which initiates the curing process of the monomeric anaerobic mixture in the absence of oxygen or air.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: July 15, 2003
    Assignee: Applied Materials Inc.
    Inventors: Hong Shih, Nianci Han, Jie Yuan, Joe Sommers, Diana Ma, Paul Vollmer, Michael C. Willson
  • Patent number: 6579796
    Abstract: Disclosed herein is a method of etching platinum using a silicon carbide mask. The method comprises providing an etch stack including a patterned silicon carbide layer overlying a layer of platinum, then pattern etching the platinum layer using a plasma generated from a source gas comprising Cl2, BCl3, and a nonreactive, diluent gas. The silicon carbide mask can be deposited and patterned using standard industry techniques, and can be easily removed without damaging either the platinum or an underlying doped substrate material. The method provides a smooth platinum etch profile and an etch profile angle of about 75° to about 90°. Also disclosed herein are methods of forming semiconductor structures useful in the preparation of DRAM and FeRAM cells.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 17, 2003
    Assignee: Applied Materials Inc.
    Inventors: Chentsau Ying, Jeng H. Hwang, Luc Van Autryve
  • Patent number: 6576489
    Abstract: The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: June 10, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Toi Yue Becky Leung, Jeffrey D. Chinn
  • Patent number: 6551941
    Abstract: A method of forming a notch silicon-containing gate structure is disclosed. This method is particularly useful in forming a T-shaped silicon-containing gate structure. A silicon-containing gate layer is etched to a first desired depth using a plasma generated from a first source gas. During the etch, etch byproducts deposit on upper sidewalls of the silicon-containing gate layer which are exposed during etching, forming a first passivation layer which protects the upper silicon-containing gate layer sidewalls from etching during subsequent processing steps. A relatively high substrate bias power is used during this first etch step to ensure that the passivation layer adheres properly to the upper silicon-containing gate sidewalls.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: April 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Chan-syun David Yang, Meihua Shen, Oranna Yauw, Jeffrey D. Chinn
  • Patent number: 6548415
    Abstract: The present disclosure provides a method for etchback of a conductive layer in a contact via (contact hole). The method described is typically used in the formation of a conductive plug within the contact hole. The method includes a first etchback in which the conductive layer is etched back; a buffer (i.e., transition) step during which the etch rate of the conductive layer is reduced; and a second etchback in which the amount of chemically reactive etchant is reduced from that used in the first etchback and a plasma species is added to provide additional physical bombardment, in an isotropic etch of the substrate surface surrounding the contact hole.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: April 15, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Chris Ting, Janet Yu
  • Patent number: 6534416
    Abstract: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: March 18, 2003
    Assignee: Applied Materials Inc.
    Inventors: Yan Ye, Allen Zhao, Xiancan Deng, Diana Xiaobing Ma
  • Patent number: 6531404
    Abstract: The present disclosure pertains to a method of plasma etching a titanium nitride layer within a semiconductor structure. In many embodiments of the method, the titanium nitride layer is etched using a source gas comprising chlorine and a fluorocarbon. Also disclosed herein is a two-step method of plasma etching a titanium nitride gate consisting of a main etch step, followed by an overetch step which utilizes a source gas comprising chlorine and a bromine-containing compound, to etch a portion of the titanium nitride layer which was not etched in the main etch step. The chlorine/bromine overetch chemistry can be used in conjunction with a chlorine/fluorocarbon main etch chemistry, or with any other titanium nitride etch chemistry known in the art.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: March 11, 2003
    Assignee: Applied Materials Inc.
    Inventors: Padmapani Nallan, Tong Zhang