Patents Represented by Attorney Keith D. Gourley
  • Patent number: 6758870
    Abstract: The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: July 6, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Francis Joseph Waller, Robert Quinn
  • Patent number: 6752620
    Abstract: A symmetric device for stabilization of a flame includes a primary oxidant pipe and a fuel pipe. The fuel pipe is internal to the primary oxidant pipe creating a primary oxidant conduit. A secondary oxidant pipe is internal to the fuel pipe creating a fuel conduit. A primary oxidant source supplies oxidant to the primary oxidant conduit. A fuel source supplies fuel to the fuel conduit. A secondary oxidant source supplies oxidant to the secondary oxidant pipe. The first oxidant velocity is greater than the second oxidant velocity and the fuel velocity is less than the second oxidant velocity. The primary oxidant pipe end extends past the fuel pipe forward end and the fuel pipe forward end extends past the secondary oxidant pipe end. A mismatch in velocity between fuel and oxidant generates a large scale vortex. An asymmetric embodiment is also provided.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 22, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Kevin Ray Heier, Mahendra Ladharam Joshi, Jeannine M. Harris, Mark Daniel D'Agostini, Aleksandar Georgi Slavejkov
  • Patent number: 6716955
    Abstract: A poly(arylene ether) polymer includes polymer repeat units of the following structure: —(O—Ar1—O—Ar2—)m—(O—Ar3—O—Ar4—)n— where Ar1, Ar2, Ar3, and Ar4 are identical or different aryl radicals, m is 0 to 1, n is 1-m, and at least one of the aryl radicals is grafted to at least one unsaturated group that is non-aromatic and is adapted to crosslink at a curing temperature below 20° C. without producing volatiles during curing and without providing functional groups after curing. Cured films containing the polymer can have a Tg from 160° C. to 180° C., a dielectric constant below 2.7 with frequency independence, and a maximum moisture absorption of less than 0.17 wt %. Accordingly, the polymer is especially useful in interlayer dielectrics and in die-attach adhesives.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: April 6, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventor: William Franklin Burgoyne, Jr.
  • Patent number: 6708573
    Abstract: A process for measuring a total mass of a pressurized fluid flowing through a conduit is provided which includes measuring a first volume, temperature and pressure of the fluid during a first timed interval of a sequence of timed intervals, calculating a first mass during the first timed interval by applying the first temperature and pressure to an equation of state to determine a first density and multiplying the first density by the first volume to determine the first mass, measuring a second volume, temperature and pressure of the fluid during a second timed interval, calculating a second mass during the second timed interval by applying the second temperature and pressure to the equation of state to determine a second density and multiplying the second density by the second volume to determine the second mass, and calculating the total mass of the fluid by summing the first and second masses.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: March 23, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Joseph Perry Cohen, Paul Anthony Mattiola, David John Farese
  • Patent number: 6660064
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and the apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Patent number: 6619336
    Abstract: A system for dispensing pressurized gas is provided which includes a pressurized gas source, a receiving tank, a gas flow line connected between the gas source and the receiving tank, a valve for initiating and terminating flow of gas between the gas source and the receiving tank, an electronic controller, and temperature and pressure sensors for sensing temperature and pressure of gas inside the receiving tank. The electronic controller stores a tank rated density and the temperature and pressure of gas and periodically calculates a density of the gas in the receiving tank based on the temperature and pressure. The electronic controller periodically compares the density of the gas with the tank rated density and initiates flow of gas through the valve when the density in the receiving tank is below the rated density and terminates flow of gas through the valve when the density reaches the tank rated density.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: September 16, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Joseph Perry Cohen, David John Farese
  • Patent number: 6610628
    Abstract: The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m2/gram as measured by adsorption of N2 or Kr using the BET method.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 26, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew Francis Nordquist, Frederick Carl Wilhelm, Francis Joseph Waller, Reinaldo Mario Machado
  • Patent number: 6565627
    Abstract: A rapid pressure swing adsorption (RPSA) process includes the use of an adsorbent fabric. The fabric can be self-supporting, have an average pore diameter greater than 5 Å and/or have a carbon dioxide mass transfer coefficient of at least 0.5 sec−1. Activated carbon cloths can be suitable for use as the adsorbent fabric. The process can be used to prepare high purity hydrogen and other products. Systems including the adsorbent fabric outperform systems lacking such fabrics in RPSA applications.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: May 20, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Catherine Marie Anne Golden, Daniel Patrick Zwilling
  • Patent number: 6506361
    Abstract: This invention relates to process for carrying out gas-liquid reactions such as those employed in the hydrogenation or oxidation of organic compounds. In the catalytic reaction of a liquid reactant and a gaseous reactant to form a product, the improvement which comprises: pressurizing a liquid reactant and, then, introducing the resultant pressurized liquid reactant to a liquid motive gas ejector wherein it is mixed with the gaseous reactant. The mixture is passed to and reacted in a monolith catalytic reactor. The products are removed from the monolith catalytic reactor at a reduced pressure and, then introduced to a tank. The unreacted materials in the reaction product then are recirculated back to the ejector.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: January 14, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Reinaldo Mario Machado, Robert Roger Broekhuis
  • Patent number: 6492290
    Abstract: This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (LnxCa1−x)y FeO3−&dgr;wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1≧y>1.0 and &dgr; is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 10, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Paul Nigel Dyer, Michael Francis Carolan, Darryl Butt, Rene Hendrick Elias Van Doorn, Raymond Ashton Cutler
  • Patent number: 6479704
    Abstract: The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: November 12, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew Francis Nordquist, Frederick Carl Wilhelm, Francis Joseph Waller, Reinaldo Mario Machado
  • Patent number: 6467306
    Abstract: A process and apparatus for separating carbon monoxide and hydrogen from a gaseous mixture thereof. The process comprises separating a cooled and partially condensed stream of feed gas comprising carbon monoxide and hydrogen into hydrogen-rich vapor and carbon monoxide-rich liquid. A portion of the carbon monoxide-rich liquid is at least partially stripped of hydrogen in a hydrogen stripping column, having an operating pressure below the feed pressure to produce hydrogen-stripped carbon monoxide liquid and hydrogen-enriched carbon monoxide vapor. A further portion of the carbon monoxide-rich liquid or a stream derived therefrom is vaporized to provide refrigeration for the feed gas. The vaporized carbon monoxide-rich liquid is compressed in a compressor to below the feed pressure, cooled and partially condensed by heat exchange and at least a portion is recycled to the hydrogen stripping column.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: October 22, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Brian Alfred McNeil
  • Patent number: 6401767
    Abstract: A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: June 11, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Joseph Perry Cohen, David John Farese, Jianguo Xu
  • Patent number: 6328945
    Abstract: A process for producing carbon monoxide (CO) by reforming methane and steam in the presence of a reforming catalyst to produce a reformate product enriched in CO, carbon dioxide (CO2) and hydrogen. CO2 in the enriched reformate is shifted to CO in an integrated sorption enhanced reaction (SER) cycle which employs a series of cyclic steps to facilitate reaction of CO2 and hydrogen at high conversion and to produce a CO-enriched product obtained at reactor feed pressure and at essentially constant flow rate. A series of adsorbent regeneration step including depressurization, purging and product pressurization are used to desorb water which is selectively adsorbed by the adsorbent during the shift reaction and to prepare the reactor for a subsequent process cycle.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: December 11, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Shivaji Sircar, William Frederick Baade, Joseph Michael Abrardo, Madhu Anand
  • Patent number: 6315973
    Abstract: A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: November 13, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shankar Nataraj, Brian Thomas Carvill, Jeffrey Raymond Hufton, Steven Gerard Mayorga, Thomas Richard Gaffney, Jeffrey Richard Brzozowski
  • Patent number: 6315968
    Abstract: The present invention is a process for separating acid gas from gaseous mixtures containing acid gas and at least one non-acid gas. The process comprises bringing the gas stream into contact with a multilayer composite membrane comprising a non-selective polymeric support layer and a separating layer comprising a blend of a water soluble polymer and one-half equivalent or more of an acid gas reactive salt based upon the repeating unit of the water soluble polymer, the acid gas reactive salt which is formed from a monovalent cation and an anion for which the pKa of the conjugate acid is greater than 3, wherein the multilayer composite membrane separates the acid gas from the gaseous mixture by selectively permeating the acid gas.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: November 13, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Quinn, Daniel Vincent Laciak, Guido Peter Pez
  • Patent number: 6312658
    Abstract: The present invention is a process for producing an essentially pure carbon monoxide (CO) product and an essentially pure hydrogen product by reforming a hydrocarbon such as methane and steam in the presence of a reforming catalyst to produce a reformate product enriched in CO, carbon dioxide and hydrogen. The reformate is subjected to an integrated series of separation steps and carbon dioxide present in a portion of the waste effluent recovered from such series of spearation steps is shifted to CO in an integrated sorption enhanced reaction (SER) process.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: November 6, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Shivaji Sircar, William Frederick Baade, Joseph Michael Abrardo, Madhu Anand
  • Patent number: 6303092
    Abstract: The present invention is a process for operating equilibrium controlled reactions in continuous mode wherein a feedstock is reacted in a plurality of reactors containing an admixture of a desired process catalyst and an adsorbent to form a product which is selectively adsorbed by the adsorbent and an admixture containing a product which is withdrawn from the reactor. A series of separation steps is used to desorb the product which is selectively adsorbed by the adsorbent and to prepare the reactor for a subsequent process cycle. The process utilizes a novel series of adsorption and desorption steps to collect the less selectively adsorbed product in substantially pure form under relatively constant flow rate at feedstock pressure.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: October 16, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Madhu Anand, Shivaji Sircar, Brian Thomas Carvill
  • Patent number: 6280503
    Abstract: Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500° C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: August 28, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Steven Gerard Mayorga, Scott Jeffrey Weigel, Thomas Richard Gaffney, Jeffrey Richard Brzozowski
  • Patent number: 6136069
    Abstract: A method of separating a more strongly adsorbable component from one or more less strongly adsorbable components residing in a gaseous mixture comprising contacting the gaseous mixture at elevated pressure with a composition and adsorbing the more strongly adsorbed gas specie on the composition, wherein the composition is represented by the formulaM.sup.n+.sub.(2x+y)/n [Si.sub.(2-x-y) Al.sub.(y) Zn.sub.(x) ]O.sub.4 ;whereinM is cation selected from Groups 1, 2, 7, 10, 11, 12 and the f block elements as defined by thePeriodic Table of the elements as adopted by IUPAC;n is the valence of the selected cation; M;x is greater than or equal to 0.02 but less than or equal to 1;y is a value less than or equal to 0.98; and2x+y is greater than or equal to 0.80;wherein the composition of matter has a FAU structure and zinc resides in.sub.-- tetrahedral positions in the framework of the FAU structure.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: October 24, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Thomas Albert Braymer, Charles Gardner Coe