Patents Represented by Attorney Kenneth A. Nelson
  • Patent number: 8026509
    Abstract: A TFET includes a source region (110, 210), a drain region (120, 220), a channel region (130, 230) between the source region and the drain region, and a gate region (140, 240) adjacent to the channel region. The source region contains a first compound semiconductor including a first Group III material and a first Group V material, and the channel region contains a second compound semiconductor including a second Group III material and a second Group V material. The drain region may contain a third compound semiconductor including a third Group III material and a third Group V material.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 27, 2011
    Assignee: Intel Corporation
    Inventors: Niti Goel, Wilman Tsai, Jack Kavalieros
  • Patent number: 8017498
    Abstract: A multiple die structure includes a first die (110), a second die (120), a carbon nanotube (130) having a first end (131) in physical contact with the first die and having a second end (132) in physical contact with the second die, and an electrically conductive material (240) in physical contact with the first end of the carbon nanotube and in physical contact with the first die. Forming a connection between the first die and the second die can include providing a connection structure (400, 500, 600, 900) in which the electrically conductive material is adjacent to the carbon nanotube, placing the connection structure adjacent to the first die and to the second die, and bonding the first die and the second die to the connection structure.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: September 13, 2011
    Assignee: Intel Corporation
    Inventors: Lakshmi Supriya, Gloria Alejandra Camacho-Bragado
  • Patent number: 7999298
    Abstract: An embedded memory cell includes a semiconducting substrate (110), a transistor (120) having a source/drain region (121) at least partially embedded in the semiconducting substrate, and a capacitor (130) at least partially embedded in the semiconducting substrate. The capacitor includes a first electrode (131) and a second electrode (132) that are electrically isolated from each other by a first electrically insulating material (133). The first electrode is electrically connected to the semiconducting substrate and the second electrode is electrically connected to the source/drain region of the transistor.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 16, 2011
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Niloy Mukherjee, Gilbert Dewey, Dinesh Somasekhar, Brian S. Doyle
  • Patent number: 7952212
    Abstract: Applications of smart polymer composites to integrated circuit packaging.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 31, 2011
    Assignee: Intel Corporation
    Inventors: Nirupama Chakrapani, James Chris Matayabas, Jr., Vijay Wakharkar
  • Patent number: 7952982
    Abstract: A data storage medium includes a piezoelectric film (101) having a surface (111) including a halogen. In one embodiment, the halogen exists in an atomic concentration of at least approximately 10 percent. The result is a hydrophobic surface conducive to long-lasting scanning probe tips, low contamination, and stable surface charge. A data storage device incorporating the data storage medium includes an enclosure (205) containing the data storage medium and an adjacent scanning probe (230) wherein the enclosure has a relative humidity of at least approximately 40 percent and at least a portion of the scanning probe is coated with a layer of water.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 31, 2011
    Assignee: Intel Corporation
    Inventors: Robert Chen, Qing Ma, Valluri Rao
  • Patent number: 7944046
    Abstract: Embodiments of a heat spreader and an assembly including such a heat spreader are disclosed. The heat spreader includes a stiffening member, which in one embodiment comprises a wall extending from a lower surface of the heat spreader. The wall may be coupled with a substrate, and the addition of this wall may decrease warpage of the substrate and increase package stiffness. The wall may be located between adjacent integrated circuit die that are disposed on the substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: May 17, 2011
    Assignee: Intel Corporation
    Inventor: Tong Wa Chao
  • Patent number: 7927959
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 19, 2011
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 7926697
    Abstract: An underfill formulation includes a solvent (110), a plurality of amphiphilic block copolymers (120) in the solvent, and an adhesion promoter (130) in the solvent. Groups of the plurality of amphiphilic block copolymers form a plurality of micelles (140) in the solvent, with the micelles including a core (141) and a shell (142) surrounding the core, and the adhesion promoter is in the core of at least some of the plurality of micelles.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 19, 2011
    Assignee: Intel Corporation
    Inventors: Linda Shekhawat, Gregory S. Constable, Youzhi E. Xu, Nisha Ananthakrishan
  • Patent number: 7923059
    Abstract: A method of enabling selective area plating on a substrate includes forming a first electrically conductive layer (310) over substantially all of the substrate, covering sections of the first electrically conductive layer with a mask (410) such that the first electrically conductive layer has a masked portion and an unmasked portion, forming a second electrically conductive layer (710, 1210), the second electrically conductive layer forming only over the unmasked portion of the first electrically conductive layer, and removing the mask and the masked portion of the first electrically conductive layer. In an embodiment, the mask covering sections of the first electrically conductive layer is a non-electrically conductive substance (1010) applied with a stamp (1020). In an embodiment, the mask is a black oxide layer.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Intel Corporation
    Inventors: Omar J. Bchir, Houssam Jomaa, Islam A. Salama, Yonggang Li
  • Patent number: 7911790
    Abstract: An electronic assembly comprising one or more high performance integrated circuits includes at least one high capacity heat sink. The heat sink, which comprises a number of fins projecting substantially radially from a core, is structured to capture air from a fan and to direct the air to optimize heat transfer from the heat sink. The heat sink fins can be formed in different shapes. In one embodiment, the fins are curved. In another embodiment, the fins are bent. In yet another embodiment, the fins are curved and bent. Methods of fabricating heat sinks and electronic assemblies, as well as application of the heat sink to an electronic assembly and to an electronic system, are also described.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: March 22, 2011
    Assignee: Intel Corporation
    Inventors: Daniel P. Carter, Michael T. Crocker
  • Patent number: 7909977
    Abstract: A method of manufacturing a substrate for a microelectronic device comprises providing a dielectric material (120, 220, 920) as a build-up layer of the substrate, applying a primer (140, 240, 940) to a surface (121, 221, 921) of the dielectric material, and forming an electrically conductive layer (150, 250, 950) over the primer. In another embodiment, the method comprises providing the dielectric material, forming the feature extending into the dielectric material, forming the electrically conductive layer over the dielectric material, applying the primer to a surface of the electrically conductive layer and attaching a dielectric layer (960) to the primer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 22, 2011
    Assignee: Intel Corporation
    Inventors: Houssam Jomaa, Amruthavalli P. Alur, Dilan Seneviratne
  • Patent number: 7906170
    Abstract: An apparatus capable of producing a moveable magnetic field includes a moveable support structure (110) and a magnetic field source (120) supported by the moveable support structure, where the magnetic field source is in a fixed position relative to the moveable support structure. The magnetic field source generates a magnetic field at a wafer surface of at least approximately 50 Oersted, and the magnetic field is aligned so as to produce magnetic anisotropy in a plane of the moveable support structure.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 15, 2011
    Assignee: Intel Corporation
    Inventors: Adam J. Schafer, Arnel M. Fajardo, Chang-Min Park
  • Patent number: 7875519
    Abstract: A method of manufacturing a metal gate structure includes providing a substrate (110) having formed thereon a gate dielectric (120), a work function metal (130) adjacent to the gate dielectric, and a gate metal (140) adjacent to the work function metal; selectively forming a sacrificial capping layer (310) centered over the gate metal; forming an electrically insulating layer (161) over the sacrificial capping layer such that the electrically insulating layer at least partially surrounds the sacrificial capping layer; selectively removing the sacrificial capping layer in order to form a trench (410) aligned to the gate metal in the electrically insulating layer; and filling the trench with an electrically insulating material in order to form an electrically insulating cap (150) centered on the gate metal.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Soley Ozer, Jason Klaus
  • Patent number: 7875937
    Abstract: A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed on a substrate that applies strain to the high-k gate dielectric layer, and a metal gate electrode that is formed on the high-k gate dielectric layer.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Matthew V. Metz, Suman Datta, Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Robert S. Chau
  • Patent number: 7875934
    Abstract: Disclosed is a method of forming a substrate having islands of diamond (or other material, such as diamond-like carbon), as well as integrated circuit devices formed from such a substrate. A diamond island can form part of the thermal solution for an integrated circuit formed on the substrate, and the diamond island can also provide part of a stress engineering solution to improve performance of the integrated circuit. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Rajashree Baskaran, Kramadhati V. Ravi
  • Patent number: 7858981
    Abstract: Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: December 28, 2010
    Assignee: Intel Corporation
    Inventors: Michael L. Hattendorf, Jack Hwang, Anand Murthy, Andrew N. Westmeyer
  • Patent number: 7859081
    Abstract: A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: December 28, 2010
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Robert S. Chau, Suman Datta, Vivek De, Ali Keshavarzi, Dinesh Somasekhar
  • Patent number: 7851905
    Abstract: A microelectronic package comprises a substrate (110, 310), a die (320) supported by the substrate, an interconnect feature (130, 230, 330) connecting the die and the substrate to each other, and a thermoelectric cooler (140, 170, 240, 340) adjacent to the interconnect feature.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Ravi V. Mahajan, Chia-Pin Chiu
  • Patent number: 7833899
    Abstract: A multi-layer thick metallization structure for a microelectronic device includes a first barrier layer (111), a first metal layer (112) over the first barrier layer, a first passivation layer (113) over the first metal layer, a via structure (114) extending through the first passivation layer, a second barrier layer (115) over the first passivation layer and in the via structure, a second metal layer (116) over the second barrier layer, and a second passivation layer (117) over the second metal layer and the first passivation layer.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 16, 2010
    Assignee: Intel Corporation
    Inventor: Kevin J. Lee
  • Patent number: 7825022
    Abstract: An electronic package includes a substrate (110, 310, 510) and a solder resist layer (120, 320, 520) over the substrate. The solder resist layer has a plurality of solder resist openings (121, 321, 521) therein. The electronic package further includes a finish layer (130, 330, 535) in the solder resist openings, an electrically conducting layer (140, 440) in the solder resist openings over the finish layer, and a solder material (150, 810) in the solder resist openings over the electrically conducting layer. The electrically conducting layer electrically connects the solder resist openings in order to enable the electrokinetic deposition of the solder material.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 2, 2010
    Assignee: Intel Corporation
    Inventors: Ravi Nalla, Charavana Gurumurthy