Patents Represented by Attorney Kenneth H. Johnson
  • Patent number: 7383855
    Abstract: A combination pressure relief and vacuum relief valve for mounting on a storage tank is disclosed as having two vertical mounting connections of different elevations; a pressure relief valve mounted on one connection; and a vacuum relief valve mounted on the other connection such that said vacuum relief valve is higher in elevation than said pressure relief valve. The valve is sanitary for use in food and pharmaceutical production and storage and has highly polished surfaces to prevent processed material from sticking. The valve also includes special sloping surfaces in the body and connections to prevent processed material from standing in the valves. The pressure valve and vacuum valve may be removed separately or rotated separately for mounting. The combination valve may be attached on storage tanks or other vessels or conduits.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 10, 2008
    Assignee: Cashco, Inc.
    Inventors: Clint M. Rogers, Jerold L. Hlad, Joe D. Dumoit
  • Patent number: 7361703
    Abstract: This invention provides a process for the stabilization of thermoplastic polyolefins during melt processing operations. The stabilizer package of this invention is “phenol free” and must contain at least one aryl monophosphite and at least one diphosphite. The process of this invention is especially suitable for the manufacture of polyethylene film.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: April 22, 2008
    Assignee: Nova Chemical (International) S.A.
    Inventors: Tony Tikuisis, Norman Dorien Joseph Aubee, Denny Paul Sauvageau, Laura Elaine Ellis, Ian Robert Gibbons, P. Scott Chisholm
  • Patent number: 7323523
    Abstract: Properties of a polymer produced in gas phase or slurry phase using a dual catalyst such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, (co)monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 29, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Patent number: 7321015
    Abstract: Properties of a polymer produced using a dual catalyst on the same support, such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: January 22, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Patent number: 7309741
    Abstract: A polyolefin blend comprising: (a) from 30 to 80 weight % of a low molecular weight copolymer comprising from 85 to 100 weight % of ethylene and from 15 to 0 weight % of one or more C4-8 alpha olefins having a density from 0.953 to 0.965 g/cm3 and a melt flow rate (2.16 kg 190° C.) from 0.1 to 20.0 g/10 minutes; and (b) from 70 to 20 weight % of a high molecular weight copolymer comprising from 85 to 99.9 weight % of ethylene and from 15 to 0.1 weight % of one or more C4-8 alpha olefins having a density from 0.915 to 0.940 g/cm3 and a melt flow rate (21.6 kg 190° C.) from 0.05 to 5.0 g/l 0 minutes, said copolymer being prepared with a single site catalyst is useful in the preparation of pipe.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: December 18, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Alexei Kazakov, Gary Yim
  • Patent number: 7270316
    Abstract: A new tray configuration for a distillation column that utilizes the entire column cross section area as active tray area for vapor/liquid contact. The new tray configuration has no downcomers and utilizes a liquid/vapor seal pan(s) located in the vapor space of the adjoining tray to collect liquid from the tray, provide entrained vapor disengaging, distribute liquid from one active tray to another and provide a liquid and vapor seal between contact trays.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: September 18, 2007
    Inventor: Joseph Michael Burch
  • Patent number: 7220886
    Abstract: A process for the production of propylene from the metathesis of ethylene and 2-butene is disclosed wherein a mixed C4 stream is first treated to enrich and separate the 2-butene from 1-butene and isobutene by isomerization of 1-butene and concurrent fractional distillation of the 2-butene and isobutene to provide the 2-butene feed the metathesis with ethylene. In addition the mixed C4 stream may be treated to remove mercaptans and dienes prior to 2-butene enrichment.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 22, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, John R. Adams, Arvids Judzis
  • Patent number: 7214744
    Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 8, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Isam Jaber
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7208646
    Abstract: A process for the selective hydrogenation of dienes in mixed streams of olefin containing hydrocarbons, such as butadiene in a mixed C4 stream with minimum loss of monoolefins is disclosed wherein the reactor is operated at conditions which induce pulse flow. The pulse flow is induced in a downflow boiling point reactor by vaporization of a portion of the liquid feed at proper conditions.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: April 24, 2007
    Assignee: Catalytic Distillation Technologies
    Inventor: Christopher C. Boyer
  • Patent number: 7201864
    Abstract: The cycle time for a rotomolding process is improved through the use of a molding material comprising a blend of at least two polyethylenes having narrow molecular weight distributions and homogeneous comonomer distributions. Alternatively, the molding temperature may be reduced to conserve energy and reduce energy costs. The polyethylene blend also has a narrow molecular weight distribution of less than 3 and a density of from 0.930 to 0.950 g/cc. Rotomolded parts prepared from the blend composition have excellent impact resistance and are also resistant to warpage. A preferred process employs a blend composition which contains a blend component having a higher molecular weight and a lower density than another blend component—this blend may be used to prepare rotomolded parts with warpage resistance and improved environmental stress crack resistance (ESCR). A highly preferred process uses a blend composition which further contains a minor amount (from 0.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: April 10, 2007
    Assignee: Nova Chemicals (International) S.A
    Inventors: Mark Weber, Philippa Hocking, Stephen John Brown, Christopher John Brooke Dobbin
  • Patent number: 7196035
    Abstract: Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 ? with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 27, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Hugh M. Putman
  • Patent number: 7189887
    Abstract: A process for the reduction of naphthalene in process streams containing alkylaromatic solvents. Naphthalene is contacted with alkylbenzenes in a distillation column reactor in the presence of transalkylation catalyst to produce alkylnaphthalenes which are concurrently separated by fractional distillation as bottoms and the alkylbenzenes are separated as overheads.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignees: Catalytic Distillation Technologies, ExxonMobil Chemical Patents, Inc.
    Inventors: Mitchell E. Loescher, Christopher C. Boyer, Michael J. Keenan, Steven E. Silverberg
  • Patent number: 7175754
    Abstract: A process for the production of low benzene content gasoline is disclosed wherein a full boiling range naphtha is fractionated to produce a light naphtha, a medium naphtha and a heavy naphtha. The benzene is contained in the medium naphtha and this stream is subjected to hydrogenation to convert the benzene to cyclohexane which may be isomerized to improve the octane. The valuable olefins are removed in the light naphtha and the valuable heavier aromatics (toluene and xylenes) are removed in the heavy naphtha. In a preferred embodiment all of the reactions are carried out in distillation column reactors.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: February 13, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Willibrord A. Groten, Kerry L. Rock
  • Patent number: 7156979
    Abstract: A thermal cracking process using tubes, pipes, and coils made of. An outermost surface covering not less than 55% of stainless steel, said surface having a thickness from 0.1 to 15 microns and being a spinel of the formula MnxCr3-xO4 wherein x is from 0.5 to 2 is not prone to coking and is suitable for hydrocarbyl reactions such as furnace tubes for cracking.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: January 2, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Leslie Wilfred Benum, Michael C. Oballa, Sabino Steven Anthony Petrone, Weixing Chen
  • Patent number: 7154013
    Abstract: A process in which tetramethylethylene and neohexene are produced by starting with butene in a distillation column reactor to produce a product containing ethylene, diisobutene, tetramethylethylene, heavier oligomers. After separating these components, the separated diisobutene is further reacted with ethylene produced from the first step to produce neohexene.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: December 26, 2006
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Patent number: 7153415
    Abstract: A light cracked naphtha is treated to convert mercaptans to sulfides and saturate dienes and then subjected to destructive hydrodesulfurization (HDS) to convert the organic sulfur compounds to hydrogen sulfide. The recombinant mercaptans formed by reaction of hydrogen sulfide and olefins at the outlet of the HDS are generally heavier than the light cracked naphtha is fractionated in admixture with a heavy cracked naphtha. A low sulfur content light cracked naphtha is produced as an overheads and the major portion of the mercaptans leave with heavy cracked naphtha as bottoms. It also advantageous to pass the heavy cracked naphtha through the HDS in admixture with the light cracked naphtha, since the recombinant mercaptans formed with the heavy cracked naphtha olefins (which displace some of the lower mercaptans which would form the light cracked naphtha olefins) will be even higher boiling and easier to separate by fractionation.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: December 26, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Willibrord A. Groten, Manoj Som, Martinus J. Almering
  • Patent number: 7145049
    Abstract: Alkenes, such as normal butenes in a mixed C4 stream are oligomerized, preferably to dimers, which are dimerized in a distillation column reactor over ZSM-57 zeolite catalyst at high conversions and high selectivity to octenes. Prior to oligomerization the mixed C4 stream is pretreated to remove dimethyl ether, butadienes and sulfur compounds.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: December 5, 2006
    Assignees: Catalytic Distillation Technologies, Exxonmobil Chemical Patents, Inc.
    Inventors: Mitchell E. Loescher, David G. Woods, Michael J. Keenan, Steven E. Silverberg, Paul W. Allen
  • Patent number: 7141705
    Abstract: A process for the etherification of C4, C5 and/or C6 tertiary olefins in a hydrocarbon feed with at least one C1 to C6 alcohol, preferably C1–C4 alcohols in a distillation column reactor, preferably where C4's and C5's ethers are co-produced, in which the amount of alcohol employed in the etherification is below that which will produce an azeotrope with hydrocarbons in the overheads from the distillation column reactor. The azeotrope results from the presence of unreacted alcohol in the reaction system in the distillation column reactor. The amount of alcohol is less than the stoichiometric amount, preferably less than 90%, more preferably 10 to 80%, of the stoichiometric amount and the overheads contain less than a stoichiometric of alcohol.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: November 28, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 7128139
    Abstract: In a radiant heating box there is a convection current which flows over the surface of tubes in the box. Adding ribs to the external surface of vertical tubes provides an enhancement to the heat transfer by convection and increases the heat transfer to the tubes.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 31, 2006
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Michael C. Oballa, Leslie Wilfred Benum, Marvin Harvey Weiss