Patents Represented by Attorney, Agent or Law Firm Linda M. Scuorzo
  • Patent number: 6190541
    Abstract: The invention is a process for decreasing the acidity of an organic acid containing petroleum oil, comprising contacting said petroleum oil containing organic acids with an effective amount of an alcohol and an effective trace amount of a base selected from Group IA and IIA metal carbonates, hydroxides, phosphates, and mixtures of a hydroxide and phosphate at a temperature and under conditions sufficient to form the corresponding ester of said alcohol.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: February 20, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Michael Siskin, Pacifico Viernes Manalastas, Guido Sartori
  • Patent number: 6187175
    Abstract: The present invention is a process to remove a +2 ionic charged, organically bound metal from a petroleum feed. The process includes contacting feed with aqueous carbon dioxide in the essential absence for emulsion formation.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: February 13, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Saul Charles Blum, Guido Sartori, Martin Leo Gorbaty, David William Savage, David Craig Dalrymple, William Edward Wales
  • Patent number: 6168702
    Abstract: The chemical demulsifier formulation has the formula: wherein R1 is H or an alkoxide of from 5 to about 20 carbon atoms; x is an integer of from about 8 to about 22 when R1 is hydrogen and from about 2 to about 5 when R1 is alkoxide; R2 is independently selected from H, (CH2CH2O)mH; R3 is independently selected from H, (CH2CH2O)nH, and (CH2CH(CH3)O)nH; m and n are integers from 1 to 50; and y and z are integers ranging from 2 to 10.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: January 2, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Varadaraj, David W. Savage, Cornelius H. Brons
  • Patent number: 6120692
    Abstract: Enhanced synthesis of transition metal dithiolene complexes is described. [1,2-bis(Trifluoromethyl)ethylene-1,2-dithiolato]nickel selectively and reversibly binds olefins (C.sub.2 to C.sub.6). Under the same conditions, the complex does not react with H.sub.2 O, C.sub.2 H.sub.2, CO, and H.sub.2, and only slowly reacts with H.sub.2 S at high concentrations. The compositions are useful for selective removal and recovery of olefins from process streams containing contaminants such as CO and H.sub.2 S.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: September 19, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Kun Wang, Edward Ira Stiefel
  • Patent number: 6121411
    Abstract: The invention relates to processes for treating acidic crudes or fractions thereof to reduce or eliminate their acidity by addition of effective amounts of crosslinked polymeric amines. The process has utility for crude processing.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: September 19, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Guido Sartori, David William Savage, Bruce Henry Ballinger, David Craig Dalrymple
  • Patent number: 6054042
    Abstract: The invention relates to a process for treating naphthenic acid containing whole crudes or fraction thereof to reduce or eliminate their acidity by contacting the acidic whole crude or fractions thereof at a suitable temperature typically of less than 200.degree. C. with a neutralizing amount typically from 0.25:1 up to 10:1 of overbased detergent. The process has the additional benefits of reducing materials handling problems associated with emulsion formation in treated crudes.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: April 25, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Martin L. Gorbaty, David J. Martella, Guido Sartori, David William Savage, Bruce Henry Ballinger, Saul Charles Blum, Michael Paul Anderson, Trikur Anantharaman Ramanarayanan
  • Patent number: 6037292
    Abstract: The present invention is directed towards compositions of two or more zeolite layers. The compositions of the invention include zeolite compositions that are themselves catalytic as well as zeolite compositions used in combination with non-zeolite catalytic materials. The compositions may include a porous support.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: March 14, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Wenyih F. Lai, Edward William Corcoran, Jr.
  • Patent number: 6034141
    Abstract: The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: March 7, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Thomas Henry Vanderspurt, Mark Alan Greaney, Daniel Paul Leta, Russell John Koveal, Mark Michael Disko, Angela V. Klaus, Sutinder K. Behal, Robert B. Harris
  • Patent number: 6034164
    Abstract: A polymer nanocomposite composition having sufficiently low air permeability to be usefull as a tire inner liner, among other things, is prepared by blending a layered material with a metal processible non-ionic first polymer having a number average molecular weight greater than 50,000 g/mole and a second non-ionic polymer compatible with the first polymer and having a number average molecular weight less than that of the first polymer.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: March 7, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Chester W. Elspass, Dennis George Peiffer
  • Patent number: 6030523
    Abstract: The present invention describes a process for decreasing the acidity of a starting calcium containing, non-acid treated acidic crude oil by adding such an acidic crude oil to an effective amount of an aqueous base solution at conditions of pH and temperature sufficient to form an unstable emulsion of the acidic crude oil in the aqueous base solution; and breaking the emulsion to form a phase containing treated crude oil having a decreased acidity and aqueous phase residual containing base and neutralized acids. The invention has utility in crude oil processing.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: February 29, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ramesh Varadaraj, David William Savage
  • Patent number: 6022494
    Abstract: The invention relates to processes for treating acidic crudes of fractions thereof to reduce or eliminate their acidity and corrosivity by addition of suitable amounts of Group IA of Group IIA oxides, hydroxides and hydrates. The process has the additional benefits of reducing materials handling problems associated with treating acidic crude oils using liquid solvents and in reducing emulsion formation.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: February 8, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Guido Sartori, David William Savage, Martin Leo Gorbaty, Bruce Henry Ballinger, Saul Charles Blum, Michael Paul Anderson, Trikur Anantharaman Ramanarayanan, David J. Martella
  • Patent number: 6013176
    Abstract: The invention relates to a process for demetallating a petroleum stream by contacting a metals-containing petroleum feed in the presence of a base selected from Group IA and IIA hydroxides and carbonates and ammonium hydroxide and carbonates and mixtures thereof an oxygen containing gas and a phase transfer agent at a temperature of up to 180.degree. C. for a time sufficient to produce a treated petroleum feed having a decreased metals content. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: January 11, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Mark Alan Greaney, Roby Bearden, Jr., Michael Charles Kerby
  • Patent number: 6007705
    Abstract: The present invention relates to a process for demetallating a petroleum stream by contacting a metals-containing petroleum feed in the presence of an aqueous base selected from Group IA and IIA hydroxides and carbonates and ammonium hydroxide and carbonate and mixtures thereof, an oxygen containing gas and a phase transfer agent at a temperature of up to 180.degree. C. for a time sufficient to produce a treated petroleum feed having a decreased metals content. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: December 28, 1999
    Assignee: Exxon Research and Engineering Co
    Inventors: Mark Alan Greaney, Paul James Polini
  • Patent number: 5981422
    Abstract: Stoichiometric and catalytic chemical transformations may be carried out in solution using novel fluorous multiphase systems (FMS). The term "fluorous" is defined as a carbon-fluorine bond rich organic molecule which is generated by replacing hydrogen atoms bonded to carbon atoms with fluorine. The novel complexes suitable for use as fluorous catalysts and reagents in the present invention contain sufficient number of fluorous moieties to render them preferentially soluble in the appropriate fluorous solvent without impairing the ability of the catalyst or reagent to be effective or participate in the corresponding reaction.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: November 9, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Istvan Tamas Horvath, Jozsef Rabai
  • Patent number: 5965008
    Abstract: The present invention provides for a method for decreasing the Conradson carbon content of petroleum streams by forming a mixture of the petroleum stream and an essentially aqueous electrolysis medium, and passing an electric current through the mixture at an anodic voltage and pH sufficient to produce a petroleum fraction having decreased Conradson carbon content. The anodic voltage is from +0.5 to +1.5V vs. SCE. Preferably the pH is acidic. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: October 12, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Mark Alan Greaney, Michael Charles Kerby
  • Patent number: 5942101
    Abstract: The present invention provides for a process for electrochemically decreasing the Conradson carbon number of petroleum streams by contacting a Conradson carbon containing petroleum stream and an aqueous electrolysis medium with a low hydrogen overpotential metal cathode at an electric current and pH sufficient to decrease the Conradson carbon of the petroleum stream. The cathode voltage is from 0 V to -3.0 V vs. SCE at a pH of from 7 to 14. The cathode material typically is stainless steel, chromium, copper and nickel.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: August 24, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventor: Mark Alan Greaney
  • Patent number: 5939352
    Abstract: The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: August 17, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Thomas Henry Vanderspurt, Mark Alan Greaney, Daniel Paul Leta, Russell John Koveal, Mark Michael Disko, Angela V. Klaus, Sutinder K. Behal, Robert B. Harris
  • Patent number: 5935421
    Abstract: The invention relates to an integrated, continuous process for the removal of organically bound sulfur (e.g., mercaptans, sulfides and thiophenes) comprising the steps of contacting a heavy oil, sodium hydroxide, hydrogen and water at a temperature of from about 380.degree. C. to 450.degree. C. to partially desulfurize the heavy oil and to form sodium sulfide, contacting said sodium sulfide via steam stripping to convert the sodium sulfide to sodium hydroxide and the sulfur recovered as hydrogen sulfide. The sodium hydroxide is recirculated for reuse. The partially desulfurized, dewatered heavy oil is treated with sodium metal under desulfurizing conditions, typically at a temperature of from about 340.degree. C. to about 450.degree. C., under a hydrogen pressure of at least about 50 psi to essentially desulfurize the oil, and form sodium sulfide. Optionally, the sodium salt generated can be regenerated to sodium metal using regeneration technology.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen Brons, Ronald D. Myers, Roby Bearden
  • Patent number: 5916702
    Abstract: The invention is a composition, comprising: a carbon-supported, dispersed platinum-zinc alloy having the formula Pt-Zn.sub.x /C wherein x ranges from greater than 0.05 to less than 1 wherein platinum is in the form of platinum particles ranging in size from about 20 .ANG. to about 30 .ANG. on a carbon support, wherein the carbon is in the form of high surface area carbon having surface area ranging from about 100 to about 500 m.sup.2 /g, and the platinum particles are present in an amount ranging from about 10 to about 40 wt % on the carbon support. The composition is made by the process of depositing on the carbon support a soluble zinc source selected from the group of zinc nitrate, acetate, halides, formates, oxalates, and acetyl acetonates and mixtures thereof; calcining to convert the zinc source to ZnO; and then reducing the zinc oxide at a temperature ranging from about 250.degree. C. to about 600.degree. C.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: June 29, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Elise Marucchi-Soos, John Lawrence Robbins, Richard James Bellows, David Terence Buckley
  • Patent number: 5911869
    Abstract: The present invention provides for a process for electrochemically demetallating petroleum streams by contacting a hydrocarbon-soluble metals containing petroleum stream and an aqueous electrolysis medium with a low hydrogen overpotential metal cathode at an electric current and pH sufficient to demetallate the petroleum stream. The cathode voltage is from 0 V to -3.0 V vs. SCE at a pH of from 7 to 14. The cathode material typically is stainless steel, chromium, copper and nickel.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: June 15, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventor: Mark Alan Greaney