Patents Represented by Attorney, Agent or Law Firm Linda M. Scuorzo
  • Patent number: 5911859
    Abstract: The invention provides a working electrode for use in an undivided electrochemical cell that is composed of at least one three dimensional accordion pleated sheet member having an open surface area of from zero to 50%. Typically suitable materials include metal mesh and woven fibers. The invention also includes an undivided electrochemical cell, containing the novel working electrode. Finally, the invention includes a method for electrochemically treating a metals-containing hydrocarbon stream in an undivided electrochemical cell by contacting a metals containing hydrocarbon stream with the novel pleated electrode. The invention has broad applicability for treating starting materials that produce electrochemically reversible (redox active) intermediates.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: June 15, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Mark Alan Greaney, Paul James Polini
  • Patent number: 5908807
    Abstract: The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: June 1, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Thomas Henry Vanderspurt, Mark Alan Greaney, Daniel Paul Leta, Russell John Koveal, Mark Michael Disko, Angela V. Klaus, Sutinder K. Behal, Robert B. Harris
  • Patent number: 5904839
    Abstract: The present invention relates to a continuous in-situ process for reducing the viscosity, corrosivity and density of heavy oils comprising the steps of (a) contacting a heavy oil with an anhydrous alkaline earth, Group IIA metal hydroxide and low pressure hydrogen at a temperature of about 380.degree. C. to about 450.degree. C. for a time sufficient to form the corresponding alkaline earth metal sulfide, recovering the reduced sulfur feed and regenerating the alkaline metal hydroxide for recycle to treat additional feed. Beneficially, the process removes heteroatoms (sulfur and nitrogen).
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: May 18, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventor: Glen Barry Brons
  • Patent number: 5879529
    Abstract: The present invention provides for a method of decreasing the Conradson carbon content of metal containing petroleum streams by forming a mixture of the Conradson carbon containing petroleum fraction and an aqueous electrolysis medium containing an electron transfer agent, and passing an electric current through the mixture or optionally through the pretreated aqueous electrolysis medium at a voltage, sufficient to decrease the Concarbon content of the stream. The cathodic voltage is from 0 V to -3.0 V vs. SCE. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: March 9, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Mark Alan Greaney, William Neergaard Olmstead
  • Patent number: 5871637
    Abstract: The present invention relates to a continuous in-situ process for reducing the viscosity, corrosivity and density of heavy oils comprising the steps of (a) contacting a heavy oil with an aqueous alkaline earth, Group IIA metal hydroxide at a temperature of about 380.degree. to about 450.degree. C. for a time sufficient to form the corresponding alkaline earth metal sulfide, recovering the reduced sulfur feed and regenerating the alkaline metal hydroxide for recycle to treat additional feed. Beneficially, the process removes heteroatoms (sulfur and nitrogen).
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: February 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventor: Glen Brons
  • Patent number: 5855764
    Abstract: The present invention provides for a method of decreasing the metals content of metal containing petroleum streams by forming a mixture of the petroleum fraction containing those metals and an aqueous electrolysis medium containing electron transfer agent, and passing an electric current through the mixture or through the pretreated aqueous electrolysis medium at a voltage, sufficient to remove the metals such as Ni, V and Fe from the stream (i.e. to produce a petroleum fraction having decreased content of the metals). The cathodic voltage is from 0 V to -3.0 V vs. SCE. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: January 5, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Mark Alan Greaney, William Neergaard Olmstead
  • Patent number: 5841013
    Abstract: The present invention is directed toward a hydrogenation process using a highly active aromatics hydrogenation catalyst. The catalyst is prepared by decomposing a catalyst precursor selected from the group consisting of metal amine molybdates, metal amine tungstates and mixtures thereof, wherein said metal amine catalyst precursor has the general formula ML (Mo.sub.y W.sub.1-y O.sub.4).sub.a where M is Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn; L is one or more neutral nitrogen-containing ligands at least one of which is a chelating polydentate ligand; 0.ltoreq.y.ltoreq.1; and a=1 for non-chromium containing catalysts and wherein 0.5.ltoreq.a.ltoreq.3 for chromium containing catalysts, at a temperature of about 200.degree. C. to about 400.degree. C. in an inert atmosphere; then reducing at a temperature of about 300.degree. C. to about 450.degree. C.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: November 24, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Teh Chung Ho, Charles Ralph Symon, Viktor Buchholz, Michel Daage
  • Patent number: 5824627
    Abstract: The invention relates to lube oil compositions containing a major amount of a lube oil and a minor amount of at least one compound containing a heterometallic tetranuclear preferably cubane, more preferably thiocubane core having 1 to 3 molybdenum atoms and the remainder Co, Cr, Cu, Ni, W, Mn, and Fe. Preferred is Cu. Thiocubane cores are also preferred and these typically have the formula M.sub.4-y Mo.sub.y S.sub.4 L.sub.n Q.sub.z, wherein y is 1 to 3, n is 2 to 6 and z is 0 to 4. Additive concentrates of the compounds as well as the method of making the compositions are disclosed.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: October 20, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Jonathan M. McConnachie, Catherine Louise Coyle, Mark Alan Greaney, Edward Ira Stiefel
  • Patent number: 5817228
    Abstract: The invention is a method for demetallating petroleum streams by subjecting a hydrocarbon soluble metals-containing petroleum stream and an aqueous electrolysis medium to a sufficient anodic potential at a pH sufficient to produce a treated petroleum stream having a decreased metals content. The invention is useful for enhancing the value of petroleum streams that traditionally have limited use in refineries due to their content of metals, particularly Ni and V.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: October 6, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Mark Alan Greaney, Michael Charles Kerby
  • Patent number: 5811602
    Abstract: The invention relates to a method for conversion of methanol, ethanol alone or in combination with n-propanol to the corresponding isoalcohols by contacting a catalyst of a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium, wherein the first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG. to about 100 .ANG.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: September 22, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Thomas Henry Vanderspurt, Russell John Koveal, Kenneth R. Miller
  • Patent number: 5770541
    Abstract: The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol and the process for making and using the catalyst. The catalyst is a noble metal supported on at least a first phase of mixed oxide crystallites containing from about 60 to about 74 atomic % (on a metals basis only) zirconium, from about 21 to about 31 atomic % manganese and from about 5 to about 9 atomic % zinc, and less than about 1 atomic % alkali, a second phase of zirconium-doped hetaerolite particles containing from about 65 to about 69 atomic % manganese, from about 31 to about 35 atomic % zinc, from about 0.5 to about 5 atomic % zirconium, and optionally a trace atomic % of alkali, and a third phase containing from about 29 to about 55 atomic % manganese, from about 13 to about 55 atomic % zinc and from about 13 to about 35 atomic % zirconium. The first phase mixed oxide crystallites have a zirconium oxide-like structure have a particle size of at least about 40 .ANG.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: June 23, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Thomas Henry Vanderspurt, Mark Alan Greaney, Daniel Paul Leta, Russell John Koveal, Mark Michael Disko, Angela V. Klaus, Sutinder K. Behal, Robert B. Harris
  • Patent number: 5707920
    Abstract: The invention relates to a catalyst for conversion of methanol, ethanol alone or in combination with n-propanol to isobutanol. The catalyst is a noble metal supported on at least a first phase having poorly crystalline manganese and zinc doped zirconium oxide phase containing about 71 to about 91 atomic % zirconium, about 10 to about 16 atomic % manganese and about 4 to about 8 atomic % zinc and a second phase of irregularly shaped hetaerolite-like crystals containing about 65 to about 69 atomic % manganese, about 31 to about 35 atomic % zinc and zero to about 5 atomic % zirconium embedded in the first phase. The catalyst is useful in making isobutanol.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: January 13, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Thomas Henry Vanderspurt, Mark Alan Greaney, Daniel Paul Leta, Russell John Koveal, Mark Michael Disko, Angela V. Klaus, Sutinder K. Behal, Robert B. Harris
  • Patent number: 5703133
    Abstract: The invention provides for a method of making isoalcohols using syngas-to-alcohol catalyst and method of making it. The catalyst is a highly dispersed, alkali promoted, La stabilized, microcrystalline Cu.sub.2 O having a particle size of .ltoreq.6 nm in the presence of an alumina structural promoter, wherein on a mole % alkali free metals-only basis Cu is present in from 45 to 55%, Zn from 10 to 20%, Al from 10 to 25%, La from 5 to 15%, and wherein the alkali is from 0.01 to 0.91% K and from 3 to 6.5% Cs. The method of making it involves coprecipitation at a constant pH from a solution of soluble metal salts of copper, zinc, lanthanum and aluminum with an alkali hydroxide, washing the coprecipitate in the essential absence of CO.sub.2, drying and calcining it, then contacting it with K and Cs to form the promoted catalyst. The promoted catalyst is dried and recalcining to produce a catalyst precursor with highly dispersed CuO crystallites. The catalyst is activated in flowing hydrogen.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: December 30, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Thomas Henry Vanderspurt, Russell John Koveal
  • Patent number: 5695632
    Abstract: The invention relates to an integrated, continuous process for the removal of organically bound sulfur (e.g., mercaptans, sulfides and thiophenes) comprising the steps of contacting a heavy oil, sodium hydroxide, hydrogen and water at a temperature of from about 380.degree. C. to 450.degree. C. to partially desulfurize the heavy oil and to form sodium sulfide, contacting said sodium sulfide with a transition metal in water to form a transition metal sulfide, sodium hydroxide and hydrogen. The sodium hydroxide is recirculated and the transition metal sulfide is removed. The partially desulfurized, dewatered heavy oil is treated with sodium metal under desulfurizing conditions, typically at a temperature of from about 340.degree. C. to about 450.degree. C., under a hydrogen pressure of at least about 50 psi to essentially desulfurize the oil, and form sodium sulfide. Optionally, the sodium salt generated can be regenerated to sodium metal using regeneration technology.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: December 9, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen B. Brons, Ronald Myers, Roby Bearden, Jr.
  • Patent number: 5691268
    Abstract: The invention provides for a method of making isoalcohols using syngas-to-alcohol catalyst and method of making it. The catalyst is a highly dispersed, alkali promoted, La stabilized, microcrystalline Cu.sub.2 O having a particle size of .ltoreq.6 nm in the presence of an alumina structural promoter, wherein on a mole % alkali free metals-only basis Cu is present in from 45 to 55%, Zn from 10 to 20%, Al from 10 to 25%, La from 5 to 15%, and wherein the alkali is from 0.01 to 0.91% K and from 3 to 6.5% Cs. The method of making it involves coprecipitation at a constant pH from a solution of soluble metal salts of copper, zinc, lanthanum and aluminum with an alkali hydroxide, washing the coprecipitate in the essential absence of CO.sub.2, drying and calcining it, then contacting it with K and Cs to form the promoted catalyst. The promoted catalyst is dried and recalcining to produce a catalyst precursor with highly dispersed CuO crystallites. The catalyst is activated in flowing hydrogen.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: November 25, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell John Koveal, Thomas Henry Vanderspurt
  • Patent number: 5683626
    Abstract: The invention relates to a process for treating naphthenic acid--containing whole crudes or fractions thereof to reduce or eliminate their acidity by contacting the acidic whole crude or fraction at a temperature of from about 50.degree. C. to 350.degree. C. with a neutralizing amount of tetraalkylammonium hydroxide, preferably tetramethyl-ammonium hydroxide. The process has the additional benefits of reducing materials handling problems associated with treating oils using liquid solvents and in reducing emulsion formation.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: November 4, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Guido Sartori, David W. Savage, Bruce H. Ballinger
  • Patent number: 5675041
    Abstract: The invention is a process for production of C.sub.3 to C.sub.6 aldehydes by hydroformylating a mixture containing: (a) C.sub.2 to C.sub.5 olefins and mixtures thereof, and (b) (i) C.sub.2 to C.sub.5 alkynes and mixtures thereof or (ii) C.sub.3 to C.sub.5 cumulated dienes and mixtures thereof or (iii) mixtures of (i) and (ii), with CO, H.sub.2 and a solution of a rhodium complex catalyst produced by complexing Rh and an organophosphorus compound at a concentration of Rh in solution from 1 to 1000 ppm by weight. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio of at least 30. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio greater than the value R.sub.L defined by the formula: ##EQU1## in which R.sub.B is the P/Rh ratio sufficient for a catalytically active Rh complex, pKa.sub.TPP is the pKa value for triphenylphosphine, pKa.sub.L is the pKa value for the triorganophosphorus compound, R is the gas constant, and .DELTA.S.sub.
    Type: Grant
    Filed: December 15, 1995
    Date of Patent: October 7, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Gabor Kiss, Frank Hershkowitz, Harry W. Deckman, Michael Gerard Matturro, Istvan T. Horvath, Anthony M. Dean, Raymond A. Cook
  • Patent number: 5652284
    Abstract: A composite material is provided comprising an elastomer, from about 0.1 wt % to about 15 wt. % of a layered mineral based on the weight of the total composition and from about 0.1 wt. % to about 15 wt. % of asphalt based on the weight of the total composition.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: July 29, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Clarence Martin Eidt, Jr., Martin Leo Gorbaty, Chester W. Elspass, Dennis George Peiffer
  • Patent number: 5643439
    Abstract: The invention relates to a process for treating naphthenic acid-containing whole crudes or fractions thereof to reduce or eliminate their acidity by contacting the acidic whole crude at a temperature of from about 60.degree. C. to 170.degree. C. with a neutralizing amount of alkali metal trialkylsilanolates. The process has the additional benefits of reducing materials handling problems associated with treating crudes using liquid solvents and in reducing emulsion formation.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: July 1, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Guido Sartori, David W. Savage, Martin L. Gorbaty, Bruce Henry Ballinger
  • Patent number: 5637141
    Abstract: The present invention provides a method of making storage-stable road paving binders by blending a minor amount of an unsaturated polymer (e.g., having at least one diene monomer) with a major amount of asphalt at an elevated temperature such that the components are sufficiently fluid to blend; treating the asphalt-polymer blend with a sulfonating agent; and stripping the treated asphalt-polymer blend at an elevated temperature with sufficient stripping gas to remove strippable sulfur moieties and to stabilize the resulting stripped, treated blend. The invention also provides asphaltic compositions made by the method. The asphaltic compositions are useful as binders in road paving applications.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: June 10, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Olga Puzic, Larry J. Evers, Kenneth E. Williamson, Martin L. Gorbaty, Nicholas C. Nahas, Alain L. Lenack