Patents Represented by Attorney, Agent or Law Firm Mark A. Oathout
  • Patent number: 6435483
    Abstract: The present invention pertains to the field of jet technology and more essentially to a liquid-gas ejector having a nozzle and a mixing chamber. The area of the minimal cross-section of the mixing chamber of the liquid-gas ejector is determined from the following formula: F = kQ ⁢ Pc * g γ where F—area of the minimal cross-section of the mixing chamber; k—design factor; Q—volumetric flow rate of a liquid through the nozzle; g—acceleration of gravity; y—density of the liquid fed into the nozzle; Pc—liquid pressure at the nozzle inlet; and where the k factor has a value ranging from 1.6 to 60 when the ratio of the liquid pressure at the nozzle inlet to the pressure of a liquid-gas mixture at the mixing chamber outlet is from 1.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: August 20, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6431224
    Abstract: A system is used for removing catalyst from a tubular reactor vessel. A power box with a 110 volt to a 12 volt DC transformer is mounted outside the vessel and connected to a 110 volt power supply. An air manifold, also mounted outside the vessel, is connected to a high-pressure air supply and connects to several valves with a separate connection to the power box. Several workstations are placed on the tube sheet within the vessel. The workstation has a frame, a drum and reel assembly mounted on the frame along with a 12 volt DC motor. An air lance hose passes into the drum and reel assembly and, at the other end, connects to an air lance and vacuum assembly. A high pressure air hose connects the drum and reel assembly to one of the valves located outside of the vessel. A controller connects to the 12 volt DC motor to power the drum and reel assembly. The controller is also connected to the power box located outside the vessel and to a foot control. A seat is mounted on the drum and reel assembly.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: August 13, 2002
    Assignee: Catalyst Services, Inc.
    Inventor: Paul Fry
  • Patent number: 6416042
    Abstract: A liquid-gas ejector comprising a nozzle and a mixing chamber is disclosed, wherein the distance between the outlet section of the nozzle and the inlet section of the mixing chamber of a liquid-gas ejector is determined from the following formula: L = k · G ⁢   ⁢ α μ where L—distance between the outlet section of the nozzle and the inlet section of the mixing chamber (mm); k—design factor, ranging from 0.001 to 0.3; &agr;—ratio of the surface area of the minimal cross-section of the active nozzle to the surface area of the minimal cross-section of the mixing chamber; G—liquid flow rate through the nozzle (g/sec); &mgr;—coefficient of resistance of the nozzle (g/sec*mm2), amounting from 0.5 to 1.1.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: July 9, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6398918
    Abstract: Pertaining mainly to the field of the petrochemical industry the method essentially includes delivery of a motive liquid into a liquid-gas ejector from a separator by a pump, feeding a liquid-gas mixture obtained in the ejector into the separator, cooling of the motive liquid with simultaneous heating of a circulating portion of a distillation residual while the motive liquid is pumped through a heat-exchanger/heater by the pump, and maintaining such an operational mode while the temperature of mediums in the separator is higher than the temperature of the motive liquid at the nozzle inlet of the ejector, where the latter is higher than the temperature of the distillation residual at the point of discharge from a rectification column and the temperature of a gas-vapor phase at the gas inlet of the ejector is lower than the temperature of the distillation residual at the point of discharge from the column.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: June 4, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6364626
    Abstract: A liquid-gas jet apparatus has an axisymmetric active nozzle and a mixing chamber. When the ratio between the surface area of the cross-section of the mixing chamber's throat and the surface area of the cross-section of the nozzle's throat ranges from 10 to 200, then the value of the radial and angular misalignment between the nozzle and the mixing chamber varies from 0.1 mm to 12 mm and from 2″ to 5°30′, respectively. When the ratio of the surface area of the cross-section of the mixing chamber's throat to the surface area of the cross-section of the nozzle's throat ranges from 200 to 1600, then the value of the radial and angular misalignment between the active nozzle and the mixing chamber varies from 0.14 mm to 25 mm and from 2.5″ to 10°30′, respectively. A Jet apparatus realized according to the above-mentioned dimensions exhibits an improved operational efficiency.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: April 2, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6364624
    Abstract: An operational method includes evacuating a gaseous medium by a steam-gas ejector, feeding a steam-gas mixture formed in the steam-gas ejector into a counter-flow condenser-separator, feeding a condensing hydrocarbon liquid, whose saturated vapor pressure is lower than the saturated vapor pressure of water into the condenser-separator, condensing steam and easy-condensable components of the evacuated gaseous medium in the condenser-separator by the condensing hydrocarbon liquid, discharging a portion of the steam condensate (water) from the condenser-separator, feeding a mixture of the rest of the steam condensate (water) and the condensate of easy-condensable components of the evacuated gaseous medium into an inlet separator, evacuating non-condensable components of the gaseous medium from the condenser-separator by a first-stage liquid-gas ejector, separating the mixture received in the inlet separator from the condenser-separator into water and condensate of the evacuated gaseous medium, discharging the wa
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: April 2, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6360786
    Abstract: A system is used for removing catalyst from a tubular reactor vessel. A power box with a 110 volt to a 12 volt DC transformer is mounted outside the vessel and connected to a 110 volt power supply. An air manifold, also mounted outside the vessel, is connected to a high-pressure air supply and connects to several valves with a separate connection to the power box. Several workstations are placed on the tube sheet within the vessel. The workstation has a frame, a drum and reel assembly mounted on the frame along with a 12 volt DC motor. An air lance hose passes into the drum and reel assembly and, at the other end, connects to an air lance and vacuum assembly. A high pressure air hose connects the drum and reel assembly to one of the valves located outside of the vessel. A controller connects to the 12 volt DC motor to power the drum and reel assembly. The controller is also connected to the power box located outside the vessel and to a foot control. A seat is mounted on the drum and reel assembly.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: March 26, 2002
    Assignee: Catalyst Services, Inc.
    Inventor: Paul Fry
  • Patent number: 6361017
    Abstract: A valve for a tank containing anhydrous ammonia has a valve mechanism joined to a flow chamber from the tank. The valve mechanism has a bonnet with a hole through a sidewall of the bonnet. A stem valve portion and a stem handle portion are mounted in the bonnet. The stem valve protion is connected to the valve. The stem handle portion is connected to a handle. The handle may be raised or lowered with respect to the bonnet to selectively engage or disengage the stem handle portion from the stem valve portion. A hasp pin may be passed through the hole in the bonnet and locked in such position for preventing the handle from being lowered.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: March 26, 2002
    Inventors: Spencer M. Nimberger, Robert Ward
  • Patent number: 6354807
    Abstract: A method for producing a vacuum, which includes feeding an ejecting vaporous medium into the gas ejector, evacuating an ejected gaseous medium by the ejecting vaporous medium, mixing of the vaporous and gaseous mediums and forming a mixture of the two, evacuating this mixture by a liquid-gas ejector, forming a liquid-gas mixture and subsequent separating the liquid-gas mixture into compressed gas and a liquid ejecting medium of the liquid-gas ejector. Substances which are reciprocally soluble in each other or mixtures of such substances are used as the vaporous and liquid ejecting mediums. A pumping-ejection system implementing the method includes a gas ejector, a liquid-gas ejector, a pump, a separator, a pressure pipeline and a vaporizing device for transforming a portion of the liquid ejecting medium into the vaporous state.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: March 12, 2002
    Inventors: Serguei A. Popov, Anatoli M. Doubinski
  • Patent number: 6352414
    Abstract: The invention pertains to the field of jet technology and relates to an operating process of a multiple-stage pump-ejector-separator system which essentially includes bypassing a motive liquid from a second-stage separator into a first-stage one and subsequent delivery of the motive liquid from the first-stage separator to the suction port of a pump. The invention also relates to a device for realizing the process which essentially constitutes a multiple-stage pump-ejector-separator system, wherein the suction side of a pump is connected to a first-stage separator, the first-stage and second-stage separators are interconnected by a vertical U-tube acting as a hydro seal, where the height of the U-tube above the motive liquid level in the second-stage separator is not less than the height of the liquid column created in the U-tube by the motive liquid from the second-stage separator under a pressure difference between the two separators.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: March 5, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6352412
    Abstract: The interior surface of a mixing chamber of a liquid-gas ejector in the field of jet technology is made of a material having a critical surface wetting tension which does not exceed 75 dyne/cm. A liquid-gas ejector realized in accordance with the invention exhibits an improved efficiency.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: March 5, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6352413
    Abstract: A pumping-ejection system has a vacuum separator, a pump connected through its suction port to the vacuum separator, an inlet liquid-gas ejector, a discharge liquid-gas ejector and an outlet separator. The outlet separator is furnished with a pipe for liquid tapping, which connects the outlet separator to the vacuum separator. The liquid inlet of the discharge ejector is connected to the discharge side of the pump. The introduced pumping-ejection system requires lower power inputs for its operation.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: March 5, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6350351
    Abstract: A plant for the vacuum distillation of liquids has a vacuum rectification column and a vacuum-producing device based on a liquid-gas jet apparatus. The plant is furnished additionally with a jet pump. A nozzle of the jet pump is connected to a pipeline for bleeding a liquid fraction from the column, an evacuated medium inlet of the jet pump is connected to an outlet of the liquid-gas jet apparatus and an outlet of the jet pump is connected to a separator of the vacuum-producing device. The plant provides more effective vacuum distillation of liquids.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: February 26, 2002
    Inventors: Serguei A. Popov, Mikhail V. Akimov
  • Patent number: 6348134
    Abstract: The invention pertains to the field of oil refining and the petrochemical industry. The proposed plant for the distillation of a liquid has a vacuum rectification column with pipes for feed of a stock product and for bleeding of a gas-vapor phase and at least one liquid fraction; and a vacuum-producing device composed of a liquid-gas jet apparatus, a separator, a pump and a condenser. The gas intake of the liquid-gas jet apparatus is connected to the pipeline for bleeding of a gas-vapor phase, the liquid intake of the jet apparatus is connected to the discharge side of the pump and the outlet of the jet apparatus is connected to the condenser's intake. The intake of the separator is connected to the condenser's outlet, the liquid outlet of the separator is connected to the suction side of the pump and the gas outlet of the separator is connected to consumers of compressed gas.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: February 19, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6346173
    Abstract: The invention essentially relates to a method for vacuum distillation of liquids that includes feeding a polar liquid into a vacuum-producing liquid-gas jet apparatus as a motive liquid if evacuation of a nonpolar gas-vapor medium is to be effected. Further, the method includes condensing the nonpolar gas-vapor medium, forming a gas-liquid mixture, disengaging a gaseous phase from the mixture, forming a liquid emulsion containing the polar liquid and a nonpolar condensate, separating the emulsion into continuous layers, withdrawing the nonpolar condensate and recycling the polar liquid by pumping it back into the liquid-gas jet apparatus. A nonpolar liquid is to be used as the motive liquid of the liquid-gas jet apparatus if evacuation of a polar gas-vapor medium is required. There is another variant of the method applicable when an evacuated gas-vapor medium contains both polar and nonpolar components.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: February 12, 2002
    Inventors: Serguei A. Popov, Evgueni D. Petroukhine
  • Patent number: 6334758
    Abstract: A pump-ejector compression unit is furnished with a receiver, and a mixing chamber of a liquid-gas ejector and a separator are located inside the receiver. An outlet of the mixing chamber is connected to the separator, the receiver is partly filled with a motive liquid, the liquid outlet of the receiver is connected to the suction side of a pump and the gas outlet of the receiver is connected to a consumer of a compressed gas. There is another embodiment of the compression unit, wherein the mixing chamber outlet is connected to a chamber for conversion of a gas-liquid flow. The introduced pump-ejector compression unit has an increased efficiency factor.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: January 1, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6312229
    Abstract: The introduced process essentially includes feeding a gas-liquid flow from a liquid-gas ejector into a hydrodynamic device for adjusting the flow speed, where the gas-liquid flow is exposed to an expansion and hence a subsonic flow regime is provided. The introduced process is implemented by a pumping-ejector unit furnished with a hydrodynamic device for adjusting the flow speed. An inlet of this device is connected to an outlet of a liquid-gas ejector, an outlet of the device is connected to a separator. The hydrodynamic device defines a profiled canal diverging in the flow direction or a collection of divergent canals arranged one after another in series. The described operating process and related pumping-ejector unit ensure a more reliable and efficient operation.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: November 6, 2001
    Inventor: Serguei A. Popov
  • Patent number: 6312230
    Abstract: The mixing chamber of a liquid jet apparatus is composed of a convergent inlet section and a cylindrical outlet section and the ratio between of the surface area of the minimal cross-section of the mixing chamber and the surface area of the inlet cross-section of the mixing chamber ranges from 0.005 to 0.392, and the angle of inclination between either the ruling line of a conical surface forming the convergent inlet section of the mixing chamber or the tangents to each point of a curved surface forming the convergent inlet section and the flow axis of the mixing chamber ranges from 30′ to 10°. In another embodiment of the jet apparatus, the whole mixing chamber converges in the flow direction and the ratio of the surface area of the minimal cross-section of the mixing chamber to the surface area of the inlet cross-section of the mixing chamber ranges from 0.005 to 0.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: November 6, 2001
    Inventor: Serguei A. Popov
  • Patent number: 6302655
    Abstract: The invention relates to the field of jet technology. Essentially a pumping-ejector unit comprises a separator and a liquid-gas ejector. Gas inlet of the ejector is connected to a source of evacuated medium, outlet of the ejector is connected to the separator and nozzle's inlet of the ejector is connected to the discharge side of a pump. The pumping-ejector unit is furnished with a jet pump. Outlet of the jet pump is connected to the suction side of the pump, nozzle's inlet of the jet pump is connected to the discharge side of the pump, evacuated medium inlet of the jet pump is connected to the separator. There is another variant of embodiment of the unit, wherein the nozzle's inlet of the jet pump is connected to a source of ejecting medium. The described pumping-ejector unit exhibits an increased reliability and effectiveness and it has a wider control range of operation modes.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: October 16, 2001
    Inventor: Serguei A. Popov
  • Patent number: RE37706
    Abstract: The present invention provides a system for cooking and/or heating a food product rapidly with the use of microwave and hot oil heating, which are applied simultaneously during the entire or partial period of the cooking and/or heating time. The food product may be frozen prior to processing, and may consist of an outer wrapper and an inner filling. It is desirable that after a relatively short cooking and/or heating process, the outer wrapper becomes crispy with a uniform golden-brown color while the inner filling reaches a desired temperature.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: May 21, 2002
    Assignee: Trust c/o Alice H. Chung, trustee
    Inventor: Jing-Yau Chung