Patents Represented by Attorney, Agent or Law Firm Mark F. Chadurjian, Esq.
  • Patent number: 6790744
    Abstract: A method and structure for a semiconductor structure that includes a substrate having at least one integrated circuit heat generating structure is disclosed. The invention has at least one integrated circuit cooling device on the substrate adjacent the heat generating structure. The cooling device is adapted to remove heat from the heat generating structure. The cooling device includes a cold region and a hot region. The cold region is positioned adjacent the heat generating structure. The cooling device has one of a silicon germanium super lattice structure. The cooling device also has a plurality of cooling devices that surround the heat generating structure. The cooling device includes a thermoelectric cooler.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: September 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Timothy D. Sullivan
  • Patent number: 6778449
    Abstract: A method and structure for a test structure that has an array of cells connected together by conductive lines. The conductive lines connect the cells together as if they were a single cell. The conductive lines can include common word line; a common bit line; a common bit line complement line, a common N-well voltage line, a common interior ground line, a common interior voltage line, and/or a common ground line.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: August 17, 2004
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Jeffrey S. Brown, Randy W. Mann, Jeffrey H. Oppold
  • Patent number: 6767793
    Abstract: A method and structure for a transistor that includes an insulator and a silicon structure on the insulator. The silicon structure includes a central portion and Fins extending from ends of the central portion. A first gate is positioned on a first side of the central portion of the silicon structure. A strain-producing layer could be between the first gate and the first side of the central portion of the silicon structure and a second gate is on a second side of the central portion of the silicon structure.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: July 27, 2004
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, David M. Fried, Louis D. Lanzerotti, Edward J. Nowak
  • Patent number: 6674134
    Abstract: The present invention provides an integrated circuit which comprises a substrate having a plurality of device regions formed therein, said plurality of device regions being electrically isolated from each other by shallow trench isolation (STI) regions and said plurality of device regions each having opposing edges abutting its corresponding STI region; selected ones of said devices regions having a preselected first device width such that an oxide layer formed thereon includes substantially thicker perimeter regions, along said opposing edges, compared to a thinner central region that does not abut its corresponding STI region; and selected other ones of the device regions having a preselected device width substantially narrower in width than the first device width such that an oxide layer formed thereon includes perimeter regions, along opposing edges, that abut each other over its central region thereby preventing formation of a corresponding thinner central region.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: January 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Wayne S. Berry, Jeffrey P. Gambino, Jack A. Mandelman, William R. Tonti
  • Patent number: 6670654
    Abstract: A silicon germanium heterojunction bipolar transistor device having a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5-25% germanium and 0-3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: December 30, 2003
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Brian P. Ronan, Steven H. Voldman
  • Patent number: 6653222
    Abstract: A method and structure for forming a refractory metal liner, includes depositing a layer of refractory metal on a first conductive layer, at least half of the depositing being carried out in the presence of an amount of passivating agent that is sufficient to impede subsequent reaction of at least a top half of the layer of refractory metal with the first conductive layer and is less than an amount of passivating agent necessary to form a stoichiometric refractory metal with the passivating agent, and annealing the refractory metal and the first conductive layer in a first element ambient, thereby forming a stoichiometric refractory metal with the first element in at least a portion of the top half of the layer of refractory metal.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: November 25, 2003
    Assignee: International Business Machines Corporation
    Inventor: William J. Murphy
  • Patent number: 6635909
    Abstract: A method and structure for a transistor that includes an insulator and a silicon structure on the insulator. The silicon structure includes a central portion and Fins extending from ends of the central portion. A first gate is positioned on a first side of the central portion of the silicon structure. A strain-producing layer could be between the first gate and the first side of the central portion of the silicon structure and a second gate is on a second side of the central portion of the silicon structure.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: October 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, David M. Fried, Louis D. Lanzerotti, Edward J. Nowak
  • Patent number: 6614074
    Abstract: A grooved planar DRAM transfer device having a grooved gate formed in a groove in a substrate located between source and drain regions. The grooved gate has sidewall portions and a bottom portion which defines a channel therealong. The bottom portion includes a doped pocket such that the threshold voltage Vt on the bottom portion is substantially less than Vt on the sidewall portions, such that the sidewall portions predominantly control electric current through the device.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: September 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: Gary Bronner, Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David Horak, Jack A. Mandelman
  • Patent number: 6605526
    Abstract: A method for forming a wirebond connection to an integrated circuit structure includes forming an insulative structure overlaying a corrosion susceptible metal wiring within the integrated circuit structure, defining a via through the insulative structure above a portion of the corrosion susceptible metal without exposing the portion of the corrosion susceptible metal, and attaching a wirebond material to the portion of the corrosion susceptible metal. The attaching process includes a preliminary process of exposing the portion of the corrosion susceptible metal. The attaching completely covers the portion of the corrosion susceptible metal.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: August 12, 2003
    Assignee: International Business Machines Corporation
    Inventors: Wayne John Howell, Ronald Lee Mendelson, William Thomas Motsiff, Jean-Guy Quintal, Sylvain Ouimet
  • Patent number: 6586818
    Abstract: A method and structure for a bipolar transistor with a semiconductor substrate having a surface and a shallow trench isolation (STI) in the surface. The STI has an edge, a crevice region in the STI adjacent the STI edge, a base region above the STI, a silicide above the base region, an emitter structure on the surface adjacent the base region, and a crevice cover between the emitter structure and the silicide. The crevice cover maintains spacing between the emitter structure and the silicide.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: July 1, 2003
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 6583469
    Abstract: A vertically oriented FET having a self-aligned dog-bone structure as well as a method for fabricating the same are provided. Specifically, the vertically oriented FET includes a channel region, a source region and a drain region. The channel region has a first horizontal width and the source and drain regions having a second horizontal width that is greater than the first horizontal width. Each of the source and drain regions have tapered portions abutting the channel region with a horizontal width that varies in a substantially linear manner from the first horizontal width to the second horizontal width.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: June 24, 2003
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Timothy J. Hoague, Edward J. Nowak, Jed H. Rankin
  • Patent number: 6525371
    Abstract: A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate has a plurality of spaced apart isolation regions on the substrate substantially parallel to one another. An active region is between each pair of adjacent isolation regions. The active and isolation regions are formed in parallel and in the column direction. In the row direction, strips of spaced apart silicon nitride are formed. A source line plug is formed between adjacent pairs of silicon nitride and is in contact with a first region in the active regions, and the isolation regions. The strips of silicon nitride are removed and isotropically etched. In addition, the materials beneath the silicon nitride are also isotropically etched. Polysilicon spacers are then formed in the row direction parallel to the source line plug and adjacent to the floating gates to form connected control gates. A second region is formed between adjacent, spaced apart, control gates.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: February 25, 2003
    Assignees: International Business Machines Corporation, Silicon Storage Technologies, Inc.
    Inventors: Jeffrey B. Johnson, Chung H. Lam, Dana Lee, Dale W. Martin, Jed H. Rankin
  • Patent number: 6455766
    Abstract: A device, having circuits formed thereon, comprises a circuit including a frequency generator for generating a detectable radio frequency energy when powered and a power generator, coupled to the frequency generator, for generating power when exposed to light.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: September 24, 2002
    Assignee: International Business Machines Corporation
    Inventors: Donald J. Cook, Edward J. Nowak, Minh H. Tong
  • Patent number: 6429066
    Abstract: A circuit element comprising a semiconductor substrate. A well region of a first conductivity type is formed in a surface of the substrate. A dielectric film is formed on the substrate. A gate conductor of the first conductivity type is formed on the dielectric film over the well region of the substrate. The gate conductor is formed of a polycrystalline silicon film. The gate conductor has an impurity concentration substantially lower than a standard impurity concentration for the gate conductor of an MOS device. A polycrystalline silicon edge spacer is formed on each side of the gate conductor. A first pair of first conductivity type impurity diffusion regions are formed adjacent to the polycrystalline silicon edge spacers. The polycrystalline silicon film and edge spacers lie on a portion of the substrate between the first pair of first conductivity type impurity diffusion regions.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey S. Brown, Robert J. Gauthier, Jr., Steven H. Voldman
  • Patent number: 6400171
    Abstract: A circuit and a method for automatically detecting an operating condition of an integrated circuit chip and for automatically outputting a control signal in response to automatically detecting one of at least two said operating conditions. With the preferred embodiment, FET off currents are reduced during burn-in of a CMOS integrated chip. This is done by a compact, local sensing circuit. The sensing circuit is off during the normal chip operation, and the sensing circuit is only used where needed to provide a local signal to cut down excessive FET off currents. The sensing circuit preferred embodiment is designed with an NFET bandgap device that employs a novel layout approach.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: June 4, 2002
    Assignee: International Business Machines Corp.
    Inventors: Andres Bryant, William Clark, Edward J. Nowak, Minh Tong
  • Patent number: 6380027
    Abstract: A structure and method for simultaneously forming array structures and support structures on a substrate comprises forming the array structures to have a V-groove, forming the support structures to have a planar surface, and simultaneously forming a first oxide in the V-groove and a second oxide in the planar surface, wherein the first oxide is thicker than the second oxide.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: April 30, 2002
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Jeffrey P. Gambino, Edward W. Kiewra, Jack A. Mandelman, Carl J. Radens, William R. Tonti, Mary E. Weybright
  • Patent number: 6369671
    Abstract: A semiconductor structure having a substrate, an insulator above a portion of the substrate, a conductor above the insulator; and at least two contact regions in the substrate on opposite sides of the portion of the substrate, wherein a voltage between the contact regions modulates a capacitance of the conductor.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: April 9, 2002
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Anthony R. Bonaccio, Howard L. Kalter, Thomas M. Maffitt, Jack A. Mandelman, Edward J. Nowak, William R. Tonti
  • Patent number: 6370676
    Abstract: A process sort test circuit and methodology for determining performance characteristic of an IC chip. The circuit is located on an IC chip itself and comprises an input for receiving an input signal; a first path from the input to a first output for transmitting the input signal to the first output, the first path sensitive to variations in a manufacturing process for the IC chip; a second path from the input to a second output for transmitting the input signal to the second output, the second path being substantially less sensitive to the variations in the manufacturing process for the IC chip; and, a pulse generator device coupled to the first and second outputs for detecting a difference in arrival times of the input signal at the first and second outputs and for outputting a sort signal if the difference is of a preselected magnitude. The sort signal enables output indication of a performance characteristic of the IC chip.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: April 9, 2002
    Assignee: International Business Machines Corporation
    Inventors: Masayuki Hayashi, Richard F. Keil, Robert J. Savaglio
  • Patent number: 6339559
    Abstract: Described is an antifuse array comprising a plurality of antifuse elements and a plurality of cell plates. Each of the antifuse elements comprises a programming transistor and one of the cell plates. The programming transistor and the cell plate of each antifuse element are both activated to program the antifuse element. Each of the cell plates is coupled to a portion of the plurality of antifuse elements and to one of a plurality of decode circuits, and the decode circuits selectively activate its coupled cell plate. With a preferred embodiment, a multitude of interconnect lines are connected to the antifuses and in particular, each interconnect line intersects each of the cell plates and is associated with one antifuse in each group of antifuses. With this preferred embodiment, the array of antifuses are decoded by predecoding one of the cell plates by elevating the cell plate voltage from ground to a program voltage, and decoding one of the interconnect lines to program one of the antifuses.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: January 15, 2002
    Assignee: International Business Machines Corporation
    Inventors: Claude Louis Bertin, John Atkinson Fifield, Nicholas Martin van Heel
  • Patent number: 6334169
    Abstract: A highly flexible system for performing a bitwrite operation on each bit of a Field Programmable Memory Array, while maintaining low-level routing requirements. The system consists of a bitwrite control subarray which is equal in width to the number of memory cells per word of a Field Programmable Memory Array and equal in height to 2N where N is the number chosen decode variations. Each cell of a Field Programmable Memory Array is associated via a bitwrite line with one cell of the bitwrite control subarray so that each cell can be independently controlled. The bitwrite control subarray can be programmed via a data bus prior to functional operation of the Field Programmable Memory Array, or while functional operation in the array continues.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: December 25, 2001
    Assignee: International Business Machines Corporation
    Inventors: Joseph A. Iadanza, Ralph D. Kilmoyer