Patents Represented by Attorney Mayer & William
  • Patent number: 8133501
    Abstract: Implantable or insertable medical devices are provided, which comprises: (a) a biocompatible polymer; and (b) at least one therapeutic agent selected from an anti-inflammatory agent, an analgesic agent, an anesthetic agent, and an antispasmodic agent. The medical devices are adapted for implantation or insertion at a site associated with pain or discomfort upon implantation or insertion. In many embodiments, the therapeutic will be selected from at least one of (i) ketorolac and pharmaceutically acceptable salts thereof (e.g., ketorolac tromethamine) and (ii) 4-diethylamino-2-butynylphenylcyclohexyl glycolate and pharmaceutically acceptable salts thereof (e.g., oxybutynin chloride). Also provided are uses for the implantable or insertable medical devices, which uses comprise reducing pain or discomfort accompanying the implantation or insertion of such devices. Further uses may comprise reducing microbial buildup along the device.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 13, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jianmin Li, Danielle Conley, Weenna Bucay Couto, Cang Duy Dao, Hamid Davoudi, Raymond Lareau, Kathleen M. Miller
  • Patent number: 8130006
    Abstract: An electronic element testing apparatus for use with a number of probes. Each probe has a lower pole and an upper pole. The apparatus includes: a first plate having a first side and a second side, the first side having an array of lower pole regions disposed thereabout, each lower pole region configured to receive a lower pole of a probe; and a plurality of signal conductor regions disposed proximate the array of lower pole regions, each signal conductor region arranged to provide a non-cable electrical path between a lower pole region and a switching circuit. The switching circuits are operable to sequentially connect each electronic element to a testing circuit via the upper and lower poles.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 6, 2012
    Assignee: Vishay General Semiconductor, inc.
    Inventors: Kuang-Jung Li, Chin-Chen Hsu, Yi-Li Lin, Shyan-I Wu
  • Patent number: 8123728
    Abstract: An antimicrobial agent delivery system and method are provided for an antimicrobial agent-bearing intervention device. A delivery tube contains the intervention device, where the delivery tube facilitates handling of the intervention device. In one example, the intervention device is a rod, and a hub is coupled to the rod. Longitudinal movement of the hub ejects the rod from the delivery tube.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 28, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Kristin Feeley, Ray Lareau
  • Patent number: 8127286
    Abstract: A Terminal Server Administrator is provided with the ability to indirectly update RDP files that have been placed inside an MSI file. The TS Web Access server retrieves the RDP file from the MSI file being published by the Active Directory, contacts the corresponding Terminal Server for any updated settings to the RDP file and icon allowing the remote program to be launched, and then passes the updated RDP file and icon to the client that is to connect to the Terminal Server. In this way RDP files can be dynamically updated without creating a new MSI file.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: February 28, 2012
    Assignee: Microsoft Corporation
    Inventor: Kevin Scott London
  • Patent number: 8119153
    Abstract: The present invention relates generally to medical devices, preferably a stent, having a drug eluting surface coated or covered with a coating of particles comprising at least an outer layer, an inner layer, and a core comprising a therapeutic agent. Specifically, the invention relates to medical devices having a hydrophilic coating comprising particles with a hydrophilic outer layer, a hydrophobic inner layer, and a core comprising a hydrophobic therapeutic agent, as well as medical devices having a hydrophobic coating comprising particles with a hydrophobic outer layer, a hydrophilic inner layer, and a core comprising a hydrophilic therapeutic agent. The coating, outer layer, and inner layer are preferably biodegradable and capable of providing sustained release of the therapeutic agent over a time period. The invention also relates to methods of making and methods of using the coated or covered medical device.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: February 21, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jan Weber
  • Patent number: 8114148
    Abstract: According to an aspect of the present invention, at least one ionic therapeutic agent is delivered from an implantable or insertable medical device that comprises an ion-conductive polymeric region that is disposed on a metallic region. The metallic region is in electrical contact with a dissimilar metallic region, such that a galvanic current is generated by the dissimilar metals when the device is implanted or inserted into a patient. Delivery of the ionic therapeutic agent from the ion-conductive polymeric region may be, for example, either accelerated or retarded by the galvanic current.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: February 14, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Liliana Atanasoska, Jan Weber, Paul Grosso, Robert W. Warner, Kasyap V. Seethamraju
  • Patent number: 8114709
    Abstract: A lead frame facilitates the handling, positioning, attachment, and/or continued integrity of multiple dies, without the use of multiple separate parts, such as jumpers. The lead frame includes a number of structures, each of which is attached to at least one lead. At least one receiving surface, arranged to receive a die, is associated with each structure. When dies are disposed on the receiving surfaces, anodes are similarly-oriented. A number of fingers are attached to the lead frame, and one or more electrode contact surfaces are attached to each finger. Each electrode contact surface can be positioned (for example, bent) with respect to one receiving surface, to facilitate electrical connection between the anode of a die and a lead. The lead frame may be used in connection with surface- and through-hole-mountable electronic devices, such as bridge rectifier modules.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: February 14, 2012
    Inventors: Peter Chou, Lucy Tian, Bear Zhang
  • Patent number: 8114436
    Abstract: Described herein are compositions comprising one or more embolics attached to an inert, dissolvable matrix as well as kits comprising these novel embolic formulations. Also described are methods of making and using these embolic formulations.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: February 14, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: John O'Gara, Sonali Puri
  • Patent number: 8111920
    Abstract: Systems and methods for operating an avionics component to a level of certification. Steps include: receiving and sending data to a data monitor and an integrity monitor, the data monitor operating at a first level of certification and the integrity monitor operating at a second higher level; using the integrity monitor, determining where a feature of the data should appear on a display; checking if the feature properly appears, and if not, an error condition appears. The system includes: a sensor for sensing an aircraft condition; a data monitor for receiving and rendering data from the sensor, the data monitor certified to a first category level; an integrity monitor for receiving the data from the sensor and for calculating where a feature of the data should appear on a data display, the integrity monitor certified to a second higher level. If the feature does not properly appear, an error condition appears.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: February 7, 2012
    Assignee: Sandel Avionics, Inc.
    Inventors: Gerald J. Block, Delmar M. Fadden
  • Patent number: 8110459
    Abstract: A semiconductor device is provided that includes a semiconductor substrate, an n-channel MOSFET formed on the substrate and a p-channel MOSFET formed on the substrate. A first layer is formed to cover the n-channel MOSFET, wherein the first layer has a first flexure-induced stress. A second layer is formed to cover the p-channel MOSFET, wherein the second layer has a second flexure-induced stress.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 7, 2012
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventor: Koichi Matsumoto
  • Patent number: 8110428
    Abstract: A method is provided for producing a thin-film photovoltaic device. The method includes forming on a substrate a first thin-film absorber layer using a first deposition process. A second thin-film absorber layer is formed on the first thin-film absorber layer using a second deposition process different from the first deposition process. The first and second thin-film absorber layers are each photovoltaically active regions and the second thin-film absorber layer has a smaller concentration of defects than the first thin-film absorber layer.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: February 7, 2012
    Assignee: Sunlight Photonics Inc.
    Inventors: Sergey Frolov, Allan James Bruce, Michael Cyrus
  • Patent number: 8105520
    Abstract: Disclosed are implantable or insertable medical devices that provide resistance to microbial growth on and in the environment of the device and resistance to microbial adhesion and biofilm formation on the device. In particular, the invention discloses implantable or insertable medical devices that comprise at least one biocompatible matrix polymer region, an antimicrobial agent for providing resistance to microbial growth and a microbial adhesion/biofilm synthesis inhibitor for inhibiting the attachment of microbes and the synthesis and accumulation of biofilm on the surface of the medical device. Also disclosed are methods of manufacturing such devices under conditions that substantially prevent preferential partitioning of any of said bioactive agents to a surface of the biocompatible matrix polymer and substantially prevent chemical modification of said bioactive agents.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 31, 2012
    Assignee: Boston Scientific Scimed, Inc,
    Inventors: Kathleen M. Miller, Gregory T. Sydney, Kurt Geitz, Peter L. Dayton, Ronald A. Sahatjian
  • Patent number: 8108787
    Abstract: In an interactive media environment, input events are distributed to a plurality of applications where each application includes zero or more script components and zero or more markup files and has a Z order which corresponds to the position of the applications' visual elements on a display. An input event processing order is utilized where the application that has focus in an interactive media environment (by virtue of its receipt of user events) is provided with the first opportunity to consume the input event. If the focused application does not consume the input event, it is then delivered to the remaining applications in top down, inverse Z order. Each application is enabled with the ability to consume an input event, pass it on to lower Z ordered applications, hide it from lower Z ordered applications, or otherwise handle it. Input event processing stops when an application consumes the input event.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: January 31, 2012
    Assignee: Microsoft Corporation
    Inventors: James C. Finger, John Andre Yovin, Khurshed Mazhar, Olivier Colle, Arthur William James Freeman
  • Patent number: 8100819
    Abstract: Provided are artificial muscle patches, which are adapted to be implanted adjacent a patient's heart, and artificial sphincter cuffs, which are adapted to be implanted around a body lumen, such as the urethra, the anal canal, or the lower esophagus. The devices of the present invention comprise: (a) one or more electroactive polymer actuators; and (b) a control unit for electrically controlling the one or more electroactive polymer actuators to expand or contract the devices.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: January 24, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Michael S. Banik
  • Patent number: 8092818
    Abstract: According to an aspect of the present invention, medical devices are provided, which contain (a) a substrate and (b) a polymeric region disposed over the substrate which contains at least one block copolymer. The block copolymer, in turn, contains at least two polymer blocks which phase separate into two or more immiscible phase domains within the polymeric region. Moreover, a bioactive species is covalently attached to at least one of the polymer blocks. By attaching the bioactive species selectively to at least one polymer block, self-assembled clusters of the bioactive species are created as the blocks phase separate into immiscible phase domains.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: January 10, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert E. Richard, Michael N. Helmus
  • Patent number: 8092821
    Abstract: According to an aspect of the present invention, implantable or insertable medical devices are provided, which contain at least one polymeric region in contact with a metallic region. The polymeric region contains at least one block copolymer that contains at least one low Tg block and at least one high Tg block. The polymeric region contains at least one polymer that contains at least one adhesion promoting group selected from one or more of halo-silane, alkoxy-silane, epoxy, anhydride, phenoxy, hydroxyl, amino, sulfonate and carboxyl groups, which at least one polymer may correspond to the block copolymer, a supplemental polymer, or both.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: January 10, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Frederick H. Strickler
  • Patent number: 8086080
    Abstract: A multiwavelength switch is provided. The switch includes at least one optical input for receiving an optical beam and at least two optical outputs. A dispersion element receives the optical beam from the optical input and spatially separates the optical beam into a plurality of wavelength components. A collimating element is provided for collimating the plurality of wavelength components. An actuatable optical arrangement receives the collimated plurality of wavelength components from the collimating element. The actuatable optical arrangement includes a digital micromirror device (DMD) from which at least one wavelength component is reflected at least twice before being directed to a selected one of optical outputs.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: December 27, 2011
    Assignee: Nistica, Inc.
    Inventors: Jefferson L. Wagener, Thomas Andrew Strasser
  • Patent number: 8086902
    Abstract: A method, system and program application is provided for automatically testing the operation of a media player with media files (e.g., video files) that are embodied in various formats. In one illustrative example visually encoded metrics are embedded in a media file that is to serve as a test file. These metrics can be detected and decoded when the test file is rendered by the media player. A testing program automatically executes various playback commands to simulate the way a user would operate the media player when viewing a media file. The testing program captures the media player's display buffer after the execution of each command. The display buffer includes the frame or frames that are played by the media player as a result of the commands. The metric or metrics embedded in the captured frames are detected and decoded and compared to a database that includes the metric or metrics that would be expected if the media player is correctly playing the test file.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: December 27, 2011
    Assignee: Microsoft Corporation
    Inventors: Vladislav Rashevsky, Cagri Aslan, Daniel Caruso
  • Patent number: 8086882
    Abstract: An energy measurement system (“EMS”) and techniques for correlating energy consumption to computing system activity. The EMS includes a data acquisition module, a processing module, and optionally a visualization module. The data acquisition module receives and transmits to the processing unit a number of sampled data streams, referred to as “data acquisition traces,” associated with a computing system under test (“SUT”). The processing module concurrently receives one or more system traces from the SUT, which are produced by particular components under examination by the EMS. Synchronization is established between the data acquisition traces and the system trace(s) when the SUT executes certain predetermined actions to produce data in both the data acquisition traces and the system trace(s), which data is used to logically align the traces. Then, as test scenarios are executed by the SUT, changes are monitored in the traces, and energy consumption is quantified.
    Type: Grant
    Filed: June 29, 2008
    Date of Patent: December 27, 2011
    Assignee: Microsoft Corporation
    Inventors: Aniket A. Shah, Alexandre G. Ferreira, Huseyin S. Yildiz, Jose H. Baldner
  • Patent number: D654881
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: February 28, 2012
    Assignee: Vishay General Semiconductor LLC
    Inventors: Ta-Te Chou, Xiong-Jie Zhang, Xian Li, Hai Fu, Yong-Qi Tian