Patents Represented by Attorney National Laboratory
  • Patent number: 7429457
    Abstract: A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 30, 2008
    Assignees: The Regents of the University of California, California Pacific Medical Center
    Inventors: Pierre-Yves Desprez, Judith Campisi
  • Patent number: 7404913
    Abstract: Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: July 29, 2008
    Assignee: The Regents of the University of California
    Inventors: Stephen Edward Derenzo, Edith Bourret-Courchesne, Marvin J. Weber, Mattias K. Klintenberg
  • Patent number: 7345975
    Abstract: Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: March 18, 2008
    Assignee: The Regents of the University of California
    Inventors: Vitaliy Fadeyev, Carl Haber
  • Patent number: 7329742
    Abstract: The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: February 12, 2008
    Assignee: The Regents of the University of California
    Inventors: Sharon A. Doyle, Michael B. Murphy
  • Patent number: 7303628
    Abstract: Disclosed herein are nanostructures comprising distinct dots and rods coupled through potential barriers of tuneable height and width, and arranged in three dimensional space at well defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: December 4, 2007
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Delia Milliron, Liberato Manna, Steven M. Hughes
  • Patent number: 7277521
    Abstract: A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: October 2, 2007
    Assignee: The Regents of the University of California
    Inventors: Eric B. Norman, Stanley G. Prussin
  • Patent number: 7274769
    Abstract: A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: September 25, 2007
    Assignee: The Regents of the University of California
    Inventors: Robert A. Nordmeyer, Gyorgy P. Snell, Earl W. Cornell, William F. Kolbe, Derek T. Yegian, Thomas N. Earnest, Joseph M. Jaklevich, Carl W. Cork, Bernard D. Santarsiero, Raymond C. Stevens
  • Patent number: 7271468
    Abstract: A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: September 18, 2007
    Assignee: The Regents of the University of California
    Inventor: Stephen Edward Holland
  • Patent number: 7265037
    Abstract: Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 ?m. They can be formed on any suitable substrate. Photovoltaic devices are also described.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: September 4, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Lori Greene, Matthew Law
  • Patent number: 7261871
    Abstract: A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800° C. and more particularly 550-700° C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: August 28, 2007
    Assignee: The Regents of the University of California
    Inventors: Vivekanantan S. Iyer, K. Peter C. Vollhardt
  • Patent number: 7238425
    Abstract: The invention relates to a method for forming a telescoped multiwall nanotube. Such a telescoped multiwall nanotube may find use as a linear or rotational bearing in microelectromechanical systems or may find use as a constant force nanospring. In the method of the invention, a multiwall nanotube is affixed to a solid, conducting substrate at one end. The tip of the free end of the multiwall nanotube is then removed, revealing the intact end of the inner wall. A nanomanipulator is then attached to the intact end, and the intact, core segments of the multiwall nanotube are partially extracted, thereby telescoping out a segment of nanotube.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: July 3, 2007
    Assignee: The Regents of the University of California
    Inventors: John P. Cumings, Alex K. Zettl, Steven G. Louie, Marvin L. Cohen
  • Patent number: 7223726
    Abstract: Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: May 29, 2007
    Assignee: The Regents of the University of California
    Inventors: Michael N. Oda, Trudy M. Forte
  • Patent number: 7148778
    Abstract: The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: December 12, 2006
    Assignee: The Regents of the University of California
    Inventors: David E. Humphries, Martin J. Pollard, Christopher J. Elkin
  • Patent number: 7139349
    Abstract: A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: November 21, 2006
    Assignee: The Regents of the University of California
    Inventor: Ka-Ngo Leung
  • Patent number: 7136757
    Abstract: A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 14, 2006
    Assignee: The Regents of the University of California
    Inventors: Gennady M. Goloshubin, Valeri A. Korneev
  • Patent number: 7126139
    Abstract: A device and a method for positionally accurate implantation of individual particles in a substrate surface (1a) are described. A diaphragm for a particle beam to be directed onto the substrate surface (1a) and a detector provided thereon in the form of a p-n junction for determining a secondary electron flow produced upon impact of a particle onto the substrate surface (1a) are provided on a tip (4) which is formed on a free end portion of a flexible arm (2) to be mounted on one side. The device is part of a scanning device operating according to the AFM method.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: October 24, 2006
    Assignee: The Regents of the University of California
    Inventors: Thomas Schenkel, Ivo W. Rangelow, Jan Meijer
  • Patent number: 7116102
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 3, 2006
    Assignee: The Regents of the University of California
    Inventors: John Clarke, Robert McDermott, Alexander Pines, Andreas Heinz Trabesinger
  • Patent number: 7060523
    Abstract: A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 13, 2006
    Assignee: The Regents of the University of California
    Inventors: Craig S. Tindall, Paul N. Luke
  • Patent number: 7057055
    Abstract: A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: June 6, 2006
    Assignee: The Regents of the University of California
    Inventors: Robert C. Bergman, Steven R. Klei
  • Patent number: 7056901
    Abstract: Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: June 6, 2006
    Assignee: The Regents of the University of California
    Inventors: Jean M. J. Frechet, Niren Murthy