Patents Represented by Attorney Paul L. Marshall
  • Patent number: 7094486
    Abstract: A fuel cell air supply system disposed in an enclosure. A blower discharge plenum for supplying air individually to various fuel cell functions via individual control valves is provided with an additional controllable purge valve connected to an exhaust port through a wall of the enclosure. At any desired time, the purge valve may be opened and the system process valves closed to draw fresh air into the enclosure and thereby purge stale gases within the enclosure to the exterior of the system. This function is especially useful just prior to start-up of the fuel cells of the system, and may also be used periodically after shut-down to maintain a desirably low temperature in the enclosure during cooling off of the fuel cell assembly.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: August 22, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: James Kralick
  • Patent number: 7093425
    Abstract: A variable flow regulator assembly includes a first stationary exhaust pipe, a second stationary exhaust pipe concentrically disposed within the first stationary exhaust pipe, and a movable exhaust pipe concentrically disposed between the first and second stationary exhaust pipes. The first stationary exhaust pipe includes one or more interference tabs concentrically and circumferentially fitted about its interior surface. The movable exhaust pipe includes one or more interference tabs concentrically and circumferentially fitted about its exterior surface. The interference tabs complimentarily interact and restrict the movement of the variable flow regulator so that the flow maldistribution of the exhaust gas stream entering the catalytic converter can be variably controlled.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: August 22, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Paul E. Jankowski, Stephen J. Myers
  • Patent number: 7094730
    Abstract: Gas treatment devices and vehicle exhaust systems are disclosed herein. In one embodiment, the vehicle exhaust system, comprises: an engine, a gas treatment device disposed downstream from the engine, the gas treatment device comprising a housing, a substrate disposed within the housing, the substrate comprising a catalyst and a hexaaluminate comprising a catalyst stabilizer disposed in a hexaaluminate crystal structure.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 22, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: William J. LaBarge, Joachim Kupe, Conrad Anderson
  • Patent number: 7094728
    Abstract: Disclosed herein is a method of distributing a washcoat along channels of a particulate filter substrate, the method including: forcing a washcoat slurry a predetermined distance into the channels, the predetermined distance being less than or equal to the full length of the channels; clearing an excess amount of washcoat slurry from the channels; and arranging a remainder of the washcoat slurry within the channels, the arranging including applying a first vacuum to a first end of the particulate filter substrate after the clearing. In one embodiment the clearing includes applying a second vacuum to a second end of the particulate filter substrate. In another embodiment, the clearing includes pulling the excess washcoat slurry from the channels. The predetermined distance may be less than or equal to the full length of the channels.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: August 22, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Jiyang Yan, Scott F. Reid, Ming Wei
  • Patent number: 7078000
    Abstract: A non-thermal plasma reactor is provided. The non-thermal plasma reactor includes a plasma-generating substrate, a housing and a mat. The plasma-generating substrate has one or more flow paths for an exhaust gas. The housing has an inlet and an outlet. The mat retains the plasma-generating substrate in the housing such that the one or more flow paths are in fluid communication with the inlet and the outlet. A voltage is supplied to the plasma-generating substrate to generate a plasma field. An electrically insulating layer is disposed between the plasma-generating substrate and the housing for preventing an arc of electricity from the plasma-generating substrate and/or the voltage to the housing.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: July 18, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Michael R. Foster, Robert X. Li, David E. Nelson
  • Patent number: 7069770
    Abstract: A sensor element can comprise a co-fired heater section, a sensing section, and a third insulating layer disposed between the electrode portion and the temperature sensor. The heater section can comprise a heater, a shield, and a temperature sensor, with a first insulating layer disposed between the heater and the shield, and a second insulating layer disposed between the shield and the temperature sensor. The sensing section can comprise an electrode portion and a sensing portion, wherein the sensing portion is disposed on a side of the electrode portion opposite the heater section.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: July 4, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: David K. Chen, Raymond L. Bloink, Carlos A. Valdes, Eric L. Ker, Jinping Zhang
  • Patent number: 7064525
    Abstract: A method for improving vehicle battery state-of-charge (SOC) for initial vehicle customer delivery is disclosed. The method is focused on vehicle assembly plant practices and ensuring that battery discharge is minimized or eliminated during the vehicle assembly process. The method includes determining the available maximum percentage of duty cycle voltage output from the vehicle alternator and determining a minimum idle boost speed necessary to provide minimum discharge or positive charge to the battery when the vehicle's accessories are in the “on” state during vehicle assembly. The method further includes programming the vehicle's controllers to force the maximum percentage of duty cycle voltage output available and the minimum idle speed necessary to provide minimum battery discharge or positive charge during the earliest part of the vehicle life.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: June 20, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Mahlon Richard Pachciarz, Robert D. Harris
  • Patent number: 7047731
    Abstract: Disclosed herein is a method for reducing internal combustion engine contaminate and additive particulate matter from a particulate filter the method including accessing the filter and entraining particulate matter in a fluid stream. Further disclosed herein is an internal combustion engine particulate filter system including a canister, a filter media mounted in said canister and an access opening in said canister. Yet still further disclosed herein is a method for determining condition of a particulate filter in situ including establishing a vacuum value for a clean particulate filter in situ, establishing a vacuum value for a used particulate filter in situ; and comparing the established value for the clean filter versus the used filter.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: May 23, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Michael Ralph Foster, Robert D. Wendling, Jarrod C. Sherwood, Egas Jose Desousa
  • Patent number: 7047641
    Abstract: An exhaust emission control device is manufactured by sizing a housing of over a substrate and intumescent mat subsequently to heating said emission control device. The step of heating causes said intumescent mat to at least reach a temperature at which it swells. If the substrate has a washcoat layer, it may be left unfired until after it is assembled with the housing, in which case the step of heating causes the washcoat layer to sinter.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 23, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Jeffrey B. Hardesty, Paul E. Jankowski
  • Patent number: 7041622
    Abstract: Disclosed is a catalyst, an emission control device, and a method for treating exhaust gas. In one embodiment, the catalyst comprises: a catalytic metal component and a macro-pore component. The macro-pore component comprises an oxygen storage component and an aluminum oxide component, wherein the oxygen storage component, the aluminum oxide component, or both comprise pores, and wherein greater than or equal to about 40% of a macro-pore component pore volume, based on a total macro-pore component pore volume, is associated with pores greater than 120 ?in diameter. In another embodiment, the method for treating an exhaust gas comprises: contacting the exhaust gas with the catalyst at a temperature and for a period of time sufficient to reduce the concentration of a material in the exhaust gas.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: May 9, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: John G. Nunan
  • Patent number: 7036489
    Abstract: In one embodiment, the method for operating an exhaust system can comprise determining a stream temperature of an exhaust stream, and desulfating the NOx adsorber. Desulfating the NOx adsorber can comprise determining an amount of oxygen needed to increase an initial temperature of a NOx adsorber to a desulfation temperature of greater than or equal to about 600° C., producing reformate comprising hydrogen and carbon monoxide in an on-board reformer, introducing the amount of oxygen to the NOx adsorber, and introducing a sufficient amount of reformate to the NOx adsorber to attain an air to fuel ratio that is less than a combustion stoichiometric A/F ratio.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Ming-Cheng Wu, Taeyoung Han, Galen B. Fisher
  • Patent number: 7037617
    Abstract: Electrical contact surfaces of a bipolar plate for a fuel cell assembly are formed of metals or metal alloys which when oxidized form highly conductive oxide passivation layers, thus maintaining high electrical conductivity and continuity through the fuel cell and forestalling corrosion failure of a cell assembly. Alloy composition systems such as, but not limited to, Ti—Nb, Ti—Ta, La—Sr—Cr, and La—Sr—Co are known to form oxide passivation layers which are highly conductive. The passivation layers may be formed in situ after assembly of a fuel cell or may be provided in an oxidative step during manufacture. The bipolar plate may be formed entirely of one or more of such alloys or may be formed of an inexpensive substrate metal having the alloy layers coated thereupon.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: David S. Eddy, Joseph V. Mantese, Charles D. Oakley
  • Patent number: 7037613
    Abstract: A method for fuel cell system thermal management includes: maintaining a first zone at a first selected temperature range, maintaining a second zone at a second selected temperature range, and maintaining a third zone at a third selected temperature range. The second zone is in thermal communication with a first sensor and comprises a reformer, while the third zone is in thermal communication with a second sensor and comprises a fuel cell stack. The second selected temperature range is greater than the first selected temperature range, while the third selected temperature range is greater than the second selected temperature range. The method may further include sensing a second zone temperature in the second zone, determining whether the second zone temperature is at the second selected temperature range, and adding a process air flow to the second zone if the second zone temperature rises above the second selected temperature range.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Karl Jacob Haltiner, Jr., Malcolm James Grieve, Kevin Richard Keegan, Michael Thomas Faville
  • Patent number: 7037615
    Abstract: A trap for an energy conversion device comprises a trapping system comprising a filter element and a trap element, and fluidly coupled to a reforming system. The trapping system is monitored by a combination of devices including an on-board diagnostic system, a temperature sensor, and a pressure differential sensor, which can individually or in combination determine when to regenerate the trapping system. The method for trapping sulfur and particulate matter using the trapping system comprises dispensing fuel into the energy conversion device. The fuel is processed in a reformer system to produce a reformate. The reformate is introduced into the trapping system and filtered to remove particulate matter and sulfur.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Malcolm James Grieve, Jeffrey G. Weissman, Subhasish Mukerjee
  • Patent number: 7037349
    Abstract: A fast start-up catalytic reformer for producing hydrogen-rich reformate from hydrocarbon fuel includes a reactor having an inlet for receiving a flow of fuel and a flow of air, a reforming catalyst disposed within a reforming chamber in the reactor, and an outlet for discharging the produced reformate stream. An ignition device within the reactor tube ignites a first lean mixture in combustion mode to generate exhaust gases to warm the catalyst which also warms the wall of the reactor adjacent the catalyst. The reactor then switches over to a rich fuel/air mixture during reforming mode. A jacket concentrically surrounds the reactor, defining a mixing chamber therebetween which communicates with the reforming chamber via openings in the wall of the reactor. Fuel entering the reformer in combustion mode is injected directly into the reforming chamber to provide rapid warming of the catalyst.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Kenneth J. Dauer, Michael R. Salemi, Richard F. Nashburn, John Kirwan
  • Patent number: 7025903
    Abstract: A process for removing contaminants from a reformer comprises removal of particulate matter under operating, or stand-by conditions, or at the start of a shutdown procedure, by introducing a gas mixture to the reformer system having an oxidant-to-fuel ratio concentration leaner than a normal oxidant-to-fuel ratio concentration and at a gas flow rate less than a peak flow rate. The process produces elevated temperatures at the reformer inlet and elevated levels of carbon dioxide and water that combine to remove the contaminants. Another embodiment includes removal of particulate matter during a shutdown procedure by cycling the flow of fuel and air on and off; monitoring an exit temperature of a catalyst substrate and alternatively, cycling the oxidant flow on and off when the exit temperature is less than or greater than a threshold temperature such that the exit temperature of the catalyst substrate is maintained below the temperature at which aging of the catalyst and/or a washcoat material may occur.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: April 11, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Malcolm James Grieve, Juergen T. Kammerer, Amanda M. Weiss, David Robert Schumann
  • Patent number: 7026776
    Abstract: The invention provides a method for controlling current in a direct current motor having a back emf constant (ke), which may be a function of field current if the direct current motor is a field wound machine, and motor resistance (Rs) in all 4 quadrants of operation. The method includes the step of rotating a motor shaft of the direct current motor with a controller by applying a first voltage across the direct current motor's terminals. The first voltage corresponds to a first value of current passing through the armature windings of the direct current motor. The method also includes the step of determining a maximum value of current to pass through the armature windings of the direct current motor. The maximum value of current is selected to prevent undesirable over current conditions, such as thermal overload as one example. The method also includes the step of receiving a signal corresponding to a desired motor speed (?*) with the controller during the rotating step.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 11, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: James E. Walters
  • Patent number: 7025875
    Abstract: A method of using a diesel reforming strategy is disclosed. The method comprises supplying diesel fuel to a fractional distillation device. The diesel fuel is fractionally distilled to produce a light fuel stream and a heavy fuel stream. The light fuel stream is reformed in a reformer to produce a reformate. A method of making an apparatus for a diesel fuel reforming strategy and a method for using a fuel cell system is also disclosed. A fuel cell system for diesel fuel reforming is also disclosed.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: April 11, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: M. James Grieve, Christopher M. DeMinco, Thomas R. Thoreson
  • Patent number: 7008709
    Abstract: A fuel cell having a non-uniform electrical resistivity over the flow area of the cell. Resistance is higher in areas of the cell having locally low levels of hydrogen than in areas having locally high levels of hydrogen. Excess oxygen ion migration and buildup is suppressed in regions having low hydrogen concentration and is correspondingly increased in regions having a surfeit of hydrogen. Destructive oxidation of the anode is suppressed and a greater percentage of the hydrogen passed into the cell is consumed, thereby increasing electric output.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: March 7, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Kevin R. Keegan, Diane M. England
  • Patent number: 7008716
    Abstract: A solid-oxide fuel cell system comprising a plurality of components having mating ports therebetween, the port interfaces being sealed by gaskets that include fluorophlogopite mica (F-mica).
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 7, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: Diane M. England