Patents Represented by Attorney Rauschenbach Patent Law Group, LLC
  • Patent number: 7446479
    Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: November 4, 2008
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7425713
    Abstract: A multi-beam synchronous raster scanning lithography system includes a processor that generates electrical signals representing a desired exposure pattern at an output. A multi-beam source of exposing radiation generates a plurality of exposure beam. A beam modulator receives the electrical signals generated by the processor and modulates the plurality of exposing beams according to the desired exposure pattern. A beam deflector deflects the plurality of exposure beams by a predetermined distance along a first axis, thereby exposing a plurality of pixels along the first axis with the desired exposure pattern. A translation stage moves the substrate a predetermined distance along a second axis to position the substrate for a subsequent exposure of pixels along the first axis that results in a desired overlapping exposure dose profile.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: September 16, 2008
    Assignee: Arradiance, Inc.
    Inventor: David Beaulieu
  • Patent number: 7408142
    Abstract: A microchannel amplifier includes an insulating substrate that defines at least one microchannel pore through the substrate from an input surface to an output surface. A conductive layer is formed on an outer surface of the at least one microchannel pore that has a non-uniform resistance as a function of distance through the at least one microchannel pore. The non-uniform resistance is selected to simulate saturation by reducing gain as a function of input current and bias voltage compared with uniform resistance. A first and second electrode is deposited on a respective one of the input and the output surfaces of the insulating substrate. The microchannel amplifier amplifying emissions propagating through the at least one microchannel pore when the first and second electrodes are biased.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 5, 2008
    Assignee: Arradiance, Inc.
    Inventors: David R. Beaulieu, Harry F. Lockwood, Anton S. Tremsin
  • Patent number: 7405397
    Abstract: A laser desorption ion source provides enhanced ion sampling efficiency and measurement sensitivity by using one or more ion guides to effectively capture ions in a plume emitted from the ion target and guide the ions through an aperture into a downstream vacuum chamber. In one configuration using two RF multipole ion guides, a first RF multipole ion guide disposed next to the ion target is selected to be sufficiently large to capture a substantial portion of the plume, while the second RF multipole ion guide disposed between the first multipole ion guide and the aperture has a smaller dimension to assist focusing of ions into the aperture. The first RF multipole ion guides the ions in the plume into the second RF multipole ion guide, which then focuses the ions so that they pass through the aperture into the downstream vacuum chamber.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 29, 2008
    Assignee: MDS Sciex Inc.
    Inventors: Thomas R. Covey, Hassan Javaheri, Bradley B. Schneider
  • Patent number: 7397980
    Abstract: An optical signal manipulation system including: a series of ports for carrying a series of optical signals to be manipulated; a spatial separating means for spatially separating at least a first and a second group of light from the series of optical signals; wavelength dispersion element subsequently spatially separating wavelengths of the first and second series; wavelength processing means for processing separated wavelengths of the first and second series.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: July 8, 2008
    Assignee: Optium Australia PTY Limited
    Inventor: Steven James Frisken
  • Patent number: 7388194
    Abstract: A mass spectrometry quantitation technique enables high-throughput quantitation of small molecules using a laser-desorption (e.g., MALDI) ion source coupled to a triple-quadrupole mass analyzer. The ions generated from the ion source are collisionally damped/cooled, and then quantitatively analyzed using the triple-quadrupole analyzer operated in the multiple-reaction-monitoring (MRM) mode. Significantly improved measurement throughput is obtained by applying the laser to each sample spot on the target for an irradiation duration significantly shorter than the time required to deplete the sample material in the sample spot. The irradiation duration may be set based on a determination of the MRM peak broadening caused by the ion optics.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: June 17, 2008
    Assignees: MDS Sciex Inc., Applera Corporation
    Inventors: Bradley Schneider, Thomas R. Covey
  • Patent number: 7381661
    Abstract: According to the invention, the distribution of material amounts deposited on the substrate may be optimized for magnetron sputter coating in which a magnetron magnetic field pattern (9) is cyclically (My) moved along the sputtering surface (7) and a substrate (11) is passed along the sputter surface (7), whereby the sputter rate is modulated by means of a modulation device (3), phase-locked with the cyclical movement (M7) of the field pattern (9).
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: June 3, 2008
    Assignee: OC Oerlikon Balzers AG
    Inventor: Othmar Zuger
  • Patent number: 7349637
    Abstract: An optical transmitter and methods of generating an optical signal having SBS suppression are described. An optical transmitter having SBS suppression according to the present invention includes a signal generator that generates a SBS suppression signal. A laser generates a line width broadened optical signal having AM noise. A signal processor generates a modified SBS suppression signal from the SBS suppression signal. A modulator modulates the line width broadened optical signal having the AM noise with a payload modulation signal and with the modified SBS suppression signal to generate a payload modulated optical signal having SBS suppression and reduced AM noise.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 25, 2008
    Assignee: Optium Corporation
    Inventors: Thomas R. Frederiksen, Jr., Stephen B. Krasulick
  • Patent number: 7345429
    Abstract: Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 18, 2008
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7340184
    Abstract: Apparatus and methods for linearizing an optical transmitter are described. A linearized optical transmitter according to the present invention includes a modulator bias voltage supply that biases an optical modulator. The optical modulator modulates an optical signal with a payload modulation signal. A feedback circuit receives electrical distortion signals generated by the modulator and generates a control signal in response to at least one of the electrical distortion signals. The control signal changes the bias voltage generated by the modulator bias voltage supply so as to reduce the at least one electrical distortion signal.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: March 4, 2008
    Assignee: Optium Corporation
    Inventors: Thomas R. Frederiksen, Jr., Stephen B. Krasulick
  • Patent number: 7325232
    Abstract: A compiler for multiple processor and distributed memory architectures is described. The compiler uses a high-level language to represent a task-level network of behaviors that describes an embedded system. The compiler maps a plurality of tasks and data onto a multiple processor, distributed memory hardware architecture. The mapping includes describing a task-level network of behaviors, each of the task-level network of behaviors being related through control and data flow. The mapping further includes predicting a schedule of tasks for the task-level network of behaviors and allocating the plurality of tasks and data to at least one of the multiple processors and to at least one of distributed memory, respectively, in response to the predicted schedule of tasks.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: January 29, 2008
    Assignee: Improv Systems, Inc.
    Inventor: Clifford Liem
  • Patent number: 7309842
    Abstract: A monolithic microplasma source includes a dielectric substrate having an outer surface that is exposed to a time varying electric field. A gap layer is positioned on an inner surface of the dielectric substrate. A shield including a slit is positioned on the gap layer. A relief structure is formed in at least one of the gap layer and the dielectric substrate. The dimensions of the gap layer, the slit in the shield, and the relief structure are chosen so as to prevent a formation of a continuous film across the relief structure. A chamber containing a gas is positioned adjacent to the shield so that the gas is ionized to form a microplasma when an electric field is induced in the chamber by the incident time varying electric field.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 18, 2007
    Assignee: Verionix Incorporated
    Inventor: Frank C. Doughty
  • Patent number: 7304799
    Abstract: An optical device including: a glass substrate; a crystalline silicon layer bonded to the glass substrate; and a thermally tunable thin-film optical filter fabricated on top of the crystalline silicon layer.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: December 4, 2007
    Assignee: Aegis Lightwave, Inc.
    Inventors: Eugene Yi-Shan Ma, Mitchell S. Cohen
  • Patent number: 7283701
    Abstract: A multi-mode optical fiber link is described that includes a single-mode optical fiber having an input that receives an optical signal for transmission through the multi-mode optical fiber link. A first spatial mode converter is coupled to the single-mode optical fiber. The first spatial mode converter conditions a modal profile of the optical signal for propagation through a multi-mode optical fiber. A multi-mode optical fiber is coupled to an output of the first spatial mode converter. A second spatial mode converter is coupled to an output of the multi-mode optical fiber. The second spatial mode converter reduces a number of optical modes in the optical signal. Both the first and the second spatial mode converters increase an effective modal bandwidth of the optical signal propagating through an output of the second spatial mode converter.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: October 16, 2007
    Assignee: Optium Corporation
    Inventors: Peter Hallemeier, Mark Colyar, Eitan Gertel, Heider Naim Ereifej
  • Patent number: 7269358
    Abstract: An optical transmitter for an optical fiber transmission system is described. The optical transmitter includes an optical source that generates an optical signal having a wavelength at an output. An optical intensity modulator modulates the optical signal with an electrical modulation signal to generate a modulated optical signal at an output. At least one parameter of the optical intensity modulator is chosen to suppress at least one of phase and sideband information in the modulated optical signal. An optical fiber is coupled to the output of the optical intensity modulator. The suppression of the at least one of the phase and the sideband information in the modulated optical signal increases an effective modal bandwidth of the optical fiber.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 11, 2007
    Assignee: Optium Corporation
    Inventors: Peter Hallemeier, Mark Colyar, Eitan Gertal, Heider Ereifej
  • Patent number: 7248762
    Abstract: A multi-mode optical fiber link is described. The multi-mode optical fiber link includes a first spatial mode converter that is coupled to a first single mode optical fiber. The first spatial mode converter conditions a modal profile of an optical signal propagating from the single mode optical fiber to the first spatial mode converter. A multi-mode optical fiber is coupled to the first spatial mode converter. A second spatial mode converter is coupled to an output of the multi-mode optical fiber and to a second single mode optical fiber. The second spatial mode converter reduces a number of optical modes in the optical signal. Both the first and the second spatial mode converters increase an effective modal bandwidth of the optical signal.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: July 24, 2007
    Assignee: Optium Coporation
    Inventors: Peter Hallemeier, Mark Coylar, Eitan Gertal, Heider Ereifej
  • Patent number: 7221827
    Abstract: An optical dispersion compensator including: a spacer element having a top surface and a bottom surface; a thin film, multi-layer mirror formed on the top surface of the spacer element, the thin film mirror having a thermally tunable reflectivity; a highly reflective mirror element formed on the bottom surface of the spacer element; and a heater element for controlling a temperature of the thermally tunable thin film mirror.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: May 22, 2007
    Assignee: Aegis Semiconductor, Inc.
    Inventors: Lawrence H. Domash, Matthias Wagner
  • Patent number: 7147759
    Abstract: Magnetically enhanced sputtering methods and apparatus are described. A magnetically enhanced sputtering source according to the present invention includes an anode and a cathode assembly having a target that is positioned adjacent to the anode. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A magnet is positioned to generate a magnetic field proximate to the weakly-ionized plasma. The magnetic field substantially traps electrons in the weakly-ionized plasma proximate to the sputtering target. A power supply produces an electric field in a gap between the anode and the cathode assembly. The electric field generates excited atoms in the weakly ionized plasma and generates secondary electrons from the sputtering target. The secondary electrons ionize the excited atoms, thereby creating a strongly-ionized plasma having ions that impact a surface of the sputtering target to generate sputtering flux.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 12, 2006
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7146110
    Abstract: An optical transmitter and methods of generating an optical signal having SBS suppression are described. An optical transmitter having SBS suppression according to the present invention includes a signal generator that generates a SBS suppression signal. A laser generates a line width broadened optical signal having AM noise. A signal processor generates a modified SBS suppression signal from the SBS suppression signal. A modulator modulates the line width broadened optical signal having the AM noise with a payload modulation signal and with the modified SBS suppression signal to generate a payload modulated optical signal having SBS suppression and reduced AM noise.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: December 5, 2006
    Assignee: Optium Corporation
    Inventors: Thomas R. Frederiksen, Jr., Stephen B. Krasulick
  • Patent number: 7123361
    Abstract: A microplasma emission spectrometer is described that includes a chamber for confining a sample volume of gas. A microplasma source that includes a resonant antenna structure generates a microplasma in the chamber from the sample volume of gas. A RF power supply provides power to the resonant antenna structure that generates the microplasma from the sample volume of gas. A spectrally sensitive detector is optically coupled to the microplasma. The entrance of the spectrally sensitive detector has dimensions and is positioned so that emissions from at least one-tenth of a total volume of the microplasma are transmitted through the entrance of the spectrally sensitive detector.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: October 17, 2006
    Assignee: Verionix Incorporated
    Inventor: Frank C. Doughty