Patents Represented by Attorney, Agent or Law Firm Richard A. Nakashima
  • Patent number: 7563433
    Abstract: The present application discloses compositions and methods of synthesis and use of F-18 labeled molecules of use, for example, in PET imaging techniques. In particular embodiments, the labeled molecules may be peptides or proteins, although other types of molecules including but not limited to aptamers, oligonucleotides and nucleic acids may be labeled and utilized for such imaging studies. In preferred embodiments, the F-18 label may be conjugated to a targeting molecule by formation of a metal complex and binding of the F-18-metal complex to a chelating moiety, such as DOTA, NOTA, DTPA, TETA or NETA. In other embodiments, the metal may first be conjugated to the chelating group and subsequently the F-18 bound to the metal. In other preferred embodiments, the F-18 labeled moiety may comprise a targetable conjugate that may be used in combination with a bispecific or multispecific antibody to target the F-18 to an antigen expressed on a cell or tissue associated with a disease, medical condition, or pathogen.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 21, 2009
    Assignee: Immunomedics, Inc.
    Inventors: William J. McBride, David M. Goldenberg
  • Patent number: 7560110
    Abstract: The present invention relates to a bi-specific antibody or antibody fragment having at least one arm that specifically binds a targeted tissue and at least one other arm that specifically binds a targetable construct. The targetable construct comprises a carrier portion which comprises or bears at least one epitope recognizable by at least one arm of said bi-specific antibody or antibody fragment. The targetable construct further comprises one or more therapeutic or diagnostic agents or enzymes. The invention provides constructs and methods for producing the bi-specific antibodies or antibody fragments, as well as methods for using them.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: July 14, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Hans J. Hansen, William J. McBride
  • Patent number: 7553953
    Abstract: The present invention provides humanized, chimeric and human anti-CSAp antibodies and anti-CSAp antibody fusion proteins that are useful for the treatment and diagnosis of various cancers, including colon cancer.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: June 30, 2009
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, David M. Goldenberg
  • Patent number: 7550143
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 23, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7541440
    Abstract: The present invention provides humanized, chimeric and human MN3 antibodies, fusion proteins, and fragments thereof. The antibodies, fusion proteins, and fragments thereof, as well as combinations with other suitable antibodies, are useful for the treatment and diagnosis of granulocyte related disorders and diseases, such as leukemia.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 2, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Hans J. Hansen, Shui-on Leung
  • Patent number: 7537930
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: May 26, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Patent number: 7534431
    Abstract: Methods and compositions are described for targeting therapeutic and diagnostic molecules to particular types of cells using targeting antibodies or other targeting moeities.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 19, 2009
    Assignee: Immunomedics, Inc.
    Inventors: William J. McBride, Hans J. Hansen, Chien-Hsing Ken Chang, David M. Goldenberg
  • Patent number: 7534866
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 19, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7531327
    Abstract: Disclosed herein are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. By transfecting cells in culture with an apoptosis-inhibiting gene or vector, cells in culture can survive longer, resulting in extension of the state and yield of protein biosynthesis. Expression of the apoptosis-inhibitor within the cells, because it does not kill the cells, allows the cells, or an increased fraction thereof, to be maintained in culture for longer periods. This invention then allows for controlled, enhanced protein production of cell lines for commercial and research uses, particularly the enhanced production of growth factors, interferons, interleukins, hormones, enzymes, and monoclonal antibodies, and the like.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 12, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Eva Horak, Ivan D. Horak, Chien Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang
  • Patent number: 7527787
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 5, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 7521416
    Abstract: The present invention provides compounds of the formula X—R1-D-[Dpr, Orn or Lys](A)-R2(Z)-D-[Dpr, Orn or Lys](B)—R3(Y)—NR4R5; or R1(X)-D-[Dpr, Orn or Lys](A)-R2(Z)-D-[Dpr, Orn or Lys](B)—R3(Y)—NR4R5, in which X is a hard acid cation chelator, a soft acid cation chelator or Ac—, R1, R2 and R3 are independently selected from a covalent bond or one or more D-amino acids that can be the same or different, Y is a hard acid cation chelator, a soft acid cation chelator or absent, Z is a hard acid cation chelator, a soft acid cation chelator or absent, and A and B are haptens or hard acid cation chelators and can be the same or different, and R4 and R5 are independently selected from the group consisting of hard acid cation chelators, soft acid cation chelators, enzymes, therapeutic agents, diagnostic agents and H. The present invention also provides methods of using these compounds and kits containing the compounds.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 21, 2009
    Assignee: Immunomedics, Inc.
    Inventors: William J. McBride, David M. Goldenberg
  • Patent number: 7521531
    Abstract: The present invention is directed toward a method for preparing and purifying a conjugate of a radioiodinated aminopolycarboxylate-appended peptide and a targeting agent. The method involves (A) providing a solution comp rising (i) unbound radioiodine (ii) a radioiodinated aminopolycarboxylate-appended peptide that is not conjugated to a targeting agent (iii) and a radioiodinated aminopolycarboxylate-appended peptide that is conjugated to the targeting agent; (B) contacting the solution with an anion-exchange resin; and (C) passing the anion-exchange resin and solution together through a filter capable of trapping anion-exchange resin particles.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 21, 2009
    Assignee: Immunomedics, Inc.
    Inventor: Serengulam V. Govindan
  • Patent number: 7521056
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions with multiple functionalities and/or binding specificities. Particular embodiments concern stably tethered structures comprising a homodimer of a first monomer, comprising a dimerization and docking domain attached to a first precursor, and a second monomer comprising an anchoring domain attached to a second precursor. The first and second precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 21, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7517964
    Abstract: This invention relates to monovalent and multivalent, monospecific binding proteins and to multivalent, multispecific binding proteins. One embodiment of these binding proteins has one or more binding sites where each binding site binds with a target antigen or an epitope on a target antigen. Another embodiment of these binding proteins has two or more binding sites where each binding site has affinity towards different epitopes on a target antigen or has affinity towards either a target antigen or a hapten. The present invention further relates to recombinant vectors useful for the expression of these functional binding proteins in a host. More specifically, the present invention relates to the tumor-associated antigen binding protein designated RS7, and other EGP-1 binding-proteins. The invention further relates to humanized, human and chimeric RS7 antigen binding proteins, and the use of such binding proteins in diagnosis and therapy.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: April 14, 2009
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam Govindan, Zhengxing Qu, Hans Hansen, Davd M. Goldenberg
  • Patent number: 7514066
    Abstract: The present invention is directed to methods for treating cancer wherein more than one therapeutic agent is used, with each of the therapeutic agents having different tumor-killing capabilities, and wherein the therapeutic agents are delivered to the tumor sites using combined targeting and pre-targeting methods. The methods of the present invention achieve good tumor to non-tumor ratios of the therapeutic agents, and are effective for cancer therapy.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: April 7, 2009
    Assignee: Immunomedics, Inc.
    Inventors: Gary L. Griffiths, Hans J. Hansen, David M. Goldenberg
  • Patent number: 7501498
    Abstract: The present invention provides humanized, chimeric and human anti-alpha-fetoprotein antibodies, fusion proteins, and fragments thereof. The antibodies, fusion proteins, and fragments thereof, as well as combinations with other suitable antibodies, are useful for the treatment and diagnosis of hepatocellular carcinoma, hepatoblastoma, germ cell tumors carcinoma and other AFP-producing tumors.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: March 10, 2009
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Zhengxing Qu, David M. Goldenberg
  • Patent number: 7470429
    Abstract: A method for increasing the target-specific toxicity of a drug is effected by pretargeting an enzyme to a mammalian target site, and then administering a cytotoxic drug known to act at the target site, or a prodrug form thereof which is converted to the drug in situ, which drug is also detoxified to form an intermediate of lower toxicity using said mammal's ordinary metabolic processes, whereby the detoxified intermediate is reconverted to its more toxic form by the pretargeted enzyme and thus has enhanced cytotoxicity at the target site. Further enhancement can be achieved by pretargeting an enzyme which converts the prodrug to the cytotoxic drug at the target site. Kits for use with the method also are provided. The method and kits permit lower doses of cytotoxic agents, maximize target site activity and minimize systemic side effects.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: December 30, 2008
    Assignee: Immunomedics, Inc.
    Inventors: Gary L. Griffiths, Hans J. Hansen
  • Patent number: 7465551
    Abstract: The invention provides kits and methods for evaluating the myelosuppressive state of a patient. These methods and kits provide a useful adjunct for cytotoxic and myelosuppressive therapies. By establishing threshold levels of certain cytokines as a surrogate for myelosuppression, treatment protocols can be optimized to reduce myelotoxicity, while maximizing effective dose. Measured levels of one or more cytokines in a patient subjected to cytotoxic therapy, relative to a normal population, may be used to determine the dose of a hematopoietic cytokine to be administered to the patient.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: December 16, 2008
    Assignee: Center For Molecular Medicine and Immunology
    Inventors: Rosalyn D. Blumenthal, David M. Goldenberg
  • Patent number: 7462352
    Abstract: The present invention provides humanized, chimeric and human anti-CD19 antibodies, anti-CD19 antibody fusion proteins, and fragments thereof that bind to a human B cell marker. Such antibodies, fusion proteins and fragments thereof are useful for the treatment and diagnosis of various B-cell disorders, including B-cell malignancies and autoimmune diseases.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: December 9, 2008
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Zhengxing Qu, David M. Goldenberg
  • Patent number: 7429381
    Abstract: The present invention relates to a bi-specific antibody or antibody fragment having at least one arm that is reactive against a targeted tissue and at least one other arm that is reactive against a linker moiety. The linker moiety encompasses a hapten to which antibodies have been prepared. The antigenic linker is conjugated to one or more therapeutic or diagnostic agents or enzymes. The invention provides constructs and methods for producing the bispecific antibodies or antibody fragments, as well as methods for using them.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: September 30, 2008
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Gary L. Griffiths, Shui-on Leung, William J. McBride, Zhengxing Qu