Patents Represented by Attorney, Agent or Law Firm Robert L. Carlson
  • Patent number: 8322166
    Abstract: A method of manufacturing an optical fiber includes providing a preform in a furnace, and drawing a plurality of optical fibers from the preform at a plurality of different draw tensions. A bandwidth characteristic of each of the optical fiber is drawn at the different draw tensions is measured. A draw tension setpoint is selected based on the measured bandwidth characteristic of each optical fiber and the draw tension is adjusted to the selected draw tension setpoint. The method further includes drawing from the preform a tuned optical fiber at the selected draw tension setpoint which provides peak bandwidth.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 4, 2012
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Peter Joseph Ronco, Pushkar Tandon
  • Patent number: 8189978
    Abstract: Bend resistant multimode optical fibers are disclosed herein. Multimode optical fibers disclosed herein comprise a core region having a radius greater than 30 microns and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index. The fiber has a total outer diameter of less than 120 microns, and exhibits an overfilled bandwidth at 850 nm greater than 500 MHz-km.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 29, 2012
    Assignee: Corning Incorporated
    Inventors: Randy Lee Bennett, Scott Robertson Bickham, Paulo Clóvis Dainese, Jr., Ming-Jun Li, Peter Joseph Ronco
  • Patent number: 8175437
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular void-containing region that contains non-periodically disposed voids. The optical fiber provides single mode transmission and low bend loss.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: May 8, 2012
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 8173038
    Abstract: A method for forming microstructure cavities in a glass substrate includes directing a first laser pulse onto the glass substrate thereby forming a first microstructure cavity having a tapered configuration. The first laser pulse may have first spot area on the surface of the glass substrate. A second laser pulse having a second spot area on the surface of the glass substrate may be directed onto the glass substrate thereby forming a second microstructure cavity having a tapered configuration. The second spot area may be substantially the same as the first spot area and may overlap the first spot area such that a portion of the sidewall disposed between first microstructure cavity and the second microstructure cavity is ablated. After the portion of the sidewall is ablated, the diameter of each of the first and second microstructure cavities may be less than the diameter of the first spot area.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: May 8, 2012
    Assignee: Corning Incorporated
    Inventor: Robert Stephen Wagner
  • Patent number: 8093322
    Abstract: The present invention relates to a curable composition having an oligomer, at least one monomer, and an amount of a substantially non-reactive oligomeric additive. The substantially non-reactive oligomeric additive is present in an amount effective to yield a cured product having a fracture toughness value that is higher than the fracture toughness value of a cured product of an otherwise identical composition lacking the non-reactive oligomeric additive. The present invention also relates to coated optical fibers, optical ribbons or bundles, and telecommunication systems having the curable composition.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 10, 2012
    Assignee: Corning Incorporated
    Inventors: Robert Randall Hancock, Jr., David Neal Schissel
  • Patent number: 8020410
    Abstract: A method of making an optical fiber preform includes depositing silica glass on the inside of a tube substrate via a plasma chemical vapor deposition (PCVD) operation. The parameters of the PCVD operation are controlled such that the silica glass deposited on the interior of the tube substrate contains a non-periodic array of voids in a cladding region of the optical fiber preform. The optical fiber preform may be used to produce an optical fiber having a core and a void containing cladding. The core of the optical fiber has a first index of refraction and the cladding has a second index of refraction less than that of the core.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: September 20, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Robert Brett Desorcie, Pushkar Tandon
  • Patent number: 8013985
    Abstract: Methods of measuring the refractive index profile of a transparent cylindrical object, such as a fiber preform, are disclosed. The methods include transmitting light rays through the cylindrical object in a direction transverse to the central axis at different heights and measuring the deflection angles to define a measured deflection function ?m. The methods include numerically fitting a target deflection function ?t to the measured deflection function ?m within a first object region that does not include the object's outer edge. The fit is conducted by varying the yet unknown parameters of the refractive index profile that define the target deflection function to obtain an estimated refractive index profile ?*i(r) over a second object region equal to or greater in size than the first object region. For cylindrical objects having at least one refractive index continuity, the method is applied to the different regions defined by the at least one discontinuity.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: September 6, 2011
    Assignee: Corning Incorporated
    Inventor: Ian D Cook
  • Patent number: 8000576
    Abstract: A double-clad optical fiber includes a core, an inner cladding and an outer cladding of silica-based glass. The core may have a radius of less than about 5 ?m, a first index of refraction n1 and does not contain any active rare-earth dopants. The inner cladding may surround the core and includes a radial thickness of at least about 25 ?m, a numerical aperture of at least about 0.25, and a second index of refraction n2 such that n2<n1. The relative refractive index percent (?%) of the core relative to the inner cladding may be greater than about 0.1%. The outer cladding may surround the inner cladding and include a radial thickness from about 10 ?m to about 50 ?m and a third index of refraction n3 such that n3<n2. The relative refractive index percent (?%) of the inner cladding relative to the outer cladding may be greater than about 1.5%.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: August 16, 2011
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Joohyun Koh, Ming-Jun Li
  • Patent number: 7930904
    Abstract: Microstructured optical fiber and method of making. Glass soot is deposited and then consolidated under conditions which are effective to trap a portion of the consolidation gases in the glass to thereby produce a non-periodic array of voids which may then be used to form a void containing cladding region in an optical fiber. Preferred void producing consolidation gases include nitrogen, argon, CO2, oxygen, chlorine, CF4, CO, SO2 and mixtures thereof.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 26, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Ming-Jun Li, Michael Thomas Murtagh, Pushkar Tandon
  • Patent number: 7926304
    Abstract: A non-contact method for measuring the tension applied to a drawn optical fiber includes drawing an optical fiber and displacing the optical fiber by applying a pressurized fluid to the optical fiber. The pressurized fluid may be applied to the optical fiber using a fluid bearing. The fluid bearing may include a fiber support channel. The optical fiber may be directed through the fiber support channel and is displaced relative to the fluid bearing by supplying the pressurized fluid to the fiber support channel. The displacement of the optical fiber caused by the application of the pressurized fluid to the optical fiber may then be measured. The tension applied to the optical fiber may then be determined based on the determined displacement.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 19, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, Andrey V. Filippov
  • Patent number: 7923483
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Patent number: 7921675
    Abstract: A method of making an optical fiber preform includes depositing silica glass soot on the inside of a substrate tube via a chemical vapor deposition operation. The silica glass soot is consolidated into silica glass under controlled conditions such that the consolidated silica glass on the interior of the substrate tube contains a non-periodic array of gaseous voids in a cladding region of the optical fiber preform. The optical fiber preform may be used to produce an optical fiber having a core and a cladding containing voids formed from the gaseous voids of the cladding region of the optical fiber preform. The core of the optical fiber has a first index of refraction and the cladding has a second index of refraction less than that of the core.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: April 12, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Robert Brett Desorcie, Pushkar Tandon
  • Patent number: 7903917
    Abstract: Optical waveguide fiber that is bend resistant and single mode at 1260 nm and at higher wavelengths. The optical fiber includes a core of radius R1 and cladding, the cladding having an annular inner region of radius R2, an annular ring region, and an annular outer region. The annular ring region starts at R2, and the ratio R1/R2 is greater than 0.40.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 8, 2011
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Daniel Aloysius Nolan, Pushkar Tandon
  • Patent number: 7844155
    Abstract: Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide a silica-based core, said core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, Li2O, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 10 and 10000 ppm by weight, and a silica-based cladding surrounding and directly adjacent the core, the cladding including a region having a lower index of refraction than the remainder of such cladding. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained which exhibits a cable cutoff less than 1400 nm chromatic dispersion at 1550 nm between about 13 and 19 ps/nm/km, and a zero dispersion wavelength less than about 1324 nm.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: November 30, 2010
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Daniel Aloysius Nolan, Pushkar Tandon
  • Patent number: 7844154
    Abstract: An optical fiber adapted to carry optical power for powering an electrical device and also optionally adapted to carry optical data for signal processing. The optical fiber capable of carrying both optical data and optical power includes a central data waveguide region that carries data light and an annular power waveguide region concentrically surrounding the data waveguide region and adapted to carry relatively large amounts of optical power. A first annular isolation region between the data and power waveguide regions and that includes microstructures serves to optically isolate the waveguide regions. An outer annular isolation region serves to confine power light to the power waveguide region and contributes to the bend-resistance of the optical fiber. An optical power and optical data distribution system that utilizes the optical fiber is also described.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Jeffrey Coon, Paulo Clóvis Dainese, Júnior, Ming-Jun Li, Pushkar Tandon
  • Patent number: 7832675
    Abstract: A method and apparatus for automatic threading and winding of optical fiber onto various components in a fiber draw system, as well as methods and apparatus for conducting online tensile screening of optical fiber at high speeds. In a preferred embodiment, the fiber is tensile tested during fiber draw and wound directly onto a shipping spool to be shipped to a customer. The tensile stress can be imparted to the fiber during the draw process by feeding the fiber through a screener capstan, which works in conjunction with another capstan to impart the desired tensile stress to the fiber during the draw process.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: November 16, 2010
    Assignee: Corning Incorporated
    Inventors: Kirk P. Bumgarner, Kenneth W. Roberts, David A. Tucker
  • Patent number: 7793521
    Abstract: A method of fabricating a photonic crystal or photonic band gap optical fiber comprises providing a preform that includes a plurality of holes in an outer diameter, wherein the holes extend from a first end of a preform to a second end of the preform, and forming at least one radially inwardly-extending slot within the preform such that the slot intersects at least some of the holes, wherein the slot does not intersect at least one hole. The method also includes establishing a first pressure in the holes intersected by the slot by introducing the first pressure to the slot, and establishing a second pressure in the at least one hole not intersected by the slot by introducing the second pressure to an end of the at least one hole not intersected by the slot. The method further includes drawing the preform into a fiber while independently controlling the first and second pressures.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: September 14, 2010
    Assignee: Corning Incorporated
    Inventors: Michael Thomas Gallagher, Daniel Warren Hawtof, Joseph Edward McCarthy, Natesan Venkataraman
  • Patent number: 7773848
    Abstract: Optical waveguide fiber that is bend resistant and single mode at 1260 nm and at higher wavelengths. The optical fiber includes a core of radius R1 and cladding, the cladding having an annular inner region of radius R2, an annular ring region, and an annular outer region. The annular ring region starts at R2, and the ratio R1/R2 is greater than 0.45.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 10, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li
  • Patent number: 7773846
    Abstract: Microstructured optical fiber for transmitting optical signals comprised of light, the optical fiber including a core region and a cladding region surrounding the core region, the cladding region including at least one annular region having an index of refraction lower than that of the remainder of the cladding. The optical fiber provides an absolute SBS threshold in dBm greater than about 9.3+10log[(1?e?(0.19)(50)/4.343)/(1?e?(?)(L)/4.343)], wherein L is the length in km and ? is the attenuation in dB/km at 1550 nm, and a fiber cutoff wavelength of less than 1400 nm.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 10, 2010
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra
  • Patent number: RE43480
    Abstract: The present invention provides materials suitable for use as secondary coatings of optical fibers. According to one embodiment of the invention, a curable composition includes an oligomer and at least one monomer, which when cured forms a cured polymeric material having a Young's modulus of at least about 1200 MPa, and a fracture toughness of at least about 0.7 MPa·m1/2. According to another embodiment of the invention, a coated optical fiber includes an optical fiber; a primary coating encapsulating the optical fiber; and a secondary coating encapsulating the primary coating, the secondary coating having a Young's modulus of at least about 1200 MPa, and a fracture toughness of at least about 0.7 MPa·m1/2.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: June 19, 2012
    Assignee: Corning Incorporated
    Inventors: Michelle D Fabian, Gregory S Glaeseman, David N Schissel