Patents Represented by Attorney, Agent or Law Firm Robert L. Carlson
  • Patent number: 7053995
    Abstract: A system and methods for automating the testing of optical fiber are described. According to one aspect of the present invention, an automated conveyor system moves spools of optical fiber contained on pallets from testing station to testing station. According to another aspect of the present invention, a single spool is carried by a specially designed pallet. According to another aspect of present invention, an apparatus automatically strips, cleans, and cleaves the fiber ends once the spool reaches the apparatus. The fiber ends are then automatically manipulated into the appropriate location for a predetermined test to be performed. According to another aspect of the invention, an apparatus automatically acquires a sample length of the optical fiber and strips, cleans, and cleaves the fiber ends of the sample. The sample length of the optical fiber is then manipulated into the appropriate location for a second predetermined test to be performed.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: May 30, 2006
    Assignee: Corning Incorporated
    Inventors: Erling R. Anderson, Richard E. Blazek, William J. Kish
  • Patent number: 7039269
    Abstract: An optical signal transmission line includes a first fiber adapted to guide an optical signal therethrough and having a first ?, a second fiber adapted to guide the optical signal therethrough and having a second ? of less than or equal to about 100 nm at a wavelength of 1550 nm, and a ? compensating fiber adapted to guide the optical signal therethrough and having a third ? of greater than or equal to about 60 nm at a wavelength of 1550 nm. The first fiber, the second fiber and the ? compensating fiber are in optical communication, thereby defining an optical transmission line having a total dispersion and a total dispersion slope. The first ?, the second ? and the third ? cooperate such that the total dispersion is within the range of about 1.0 ps/nm-km?total dispersion?about ?1.0 ps/nm-km at a wavelength of 1550 nm, and the total dispersion slope is within the range of about 0.02 ps/nm2-km?total dispersion slope?about ?0.02 ps/nm2-km at a wavelength of 1550 nm.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 2, 2006
    Assignee: Corning Incorporated
    Inventors: V. Srikant, Sergey Y. Ten, Jan Conradi
  • Patent number: 7010205
    Abstract: The present invention provides optical fiber coating systems and coated optical fibers having hydrophilic primary coatings. According to one embodiment of the invention, a coated optical fiber includes an optical fiber having a core and a cladding; a hydrophilic primary coating encapsulating the optical fiber, the primary coating having a Young's modulus less than about 2 MPa; and a secondary coating encapsulating the primary coating, wherein the primary coating exhibits substantially no water bubble formation and substantially no delamination when the coated optical fiber is soaked in water at 23° C. for 30 days.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: March 7, 2006
    Assignee: Corning Incorporated
    Inventors: Michelle D. Fabian, Kevin R. McCarthy, Michael J. Winningham
  • Patent number: 7010206
    Abstract: The present invention provides optical fiber coating systems and coated optical fibers. According to one embodiment of the invention, a coated optical fiber includes an optical fiber having a core and a cladding; and a primary coating encapsulating the optical fiber, the primary coating having a Young's modulus of about 5 MPa or less, the primary coating being the cured reaction product of a primary curable composition having a gel time less than about 1.4 seconds at a UV intensity of 3.4 mW/cm2.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 7, 2006
    Assignee: Corning Incorporated
    Inventors: Linda S. Baker, Kevin R. McCarthy, Michael J. Winningham, Lung-Ming Wu
  • Patent number: 6946646
    Abstract: A method for screening fiber polarization mode dispersion using a polarization optical time domain reflectometer. A pulse radiation is emitted into the fiber under test, and the backscattered radiation is measured by the POTDR and used to obtain a POTDR trace. The POTDR trace is then analyzed to compare the variation of signals along the length of the fiber, the variation in signals relating to the level of PMD along the length of the fiber. Because high levels of PMD correspond to localized levels of low variability, by setting the variability of signal threshold sufficiently low, fibers having unacceptably high localized PMD can be identified and removed.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: September 20, 2005
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Nicol A. Heron, Timothy L. Hunt, Eric J. Mozdy, Darren A. Stainer
  • Patent number: 6920271
    Abstract: Disclosed is an optical waveguide fiber having a reduced PMD and a method of making the optical waveguide fiber. The optical waveguide fiber in accord with the invention has a particular spin pattern impressed upon the optical waveguide fiber during the drawing step. The spin pattern causes the fast axis of birefringence to rotate along the long axis of the optical waveguide fiber. The spin functions in accord with the invention provide for reduced PMD even in cases in which draw speed, spin magnitude, or modulation parameter vary while the spin pattern is being impressed upon the optical waveguide fiber.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: July 19, 2005
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li
  • Patent number: 6876804
    Abstract: An optical fiber, and a method of making such optical fiber, wherein the optical fiber exhibits a beatlength greater than about 5 meters, and the fiber is spun to provide a polarization mode dispersion in the spun state of said fiber which is less than 0.05 ps/km1/2. The fiber is spun by employing a spin having a spin repeat distance of at least 10 meters. The spin preferably alternates between clockwise and counterclockwise directions.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: April 5, 2005
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li, Jesse C. Meyer, Oscar Palmer
  • Patent number: 6870999
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen -18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: March 22, 2005
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, III, Dale R. Powers, James A. West
  • Patent number: 6829423
    Abstract: Disclosed is a single mode optical waveguide fiber having alternating segments of positive and negative dispersion and dispersion slope. The relative indexes, the refractive index profiles and the radii of the segments are chosen to provide low total dispersion and dispersion slope. Preferred waveguides in accordance with the invention exhibit a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2, and more preferably less than 1 ps/nm2-km. The total dispersion of the waveguide fiber is in the range of about −2.0 to +2.0 ps/nm-km at 1550 nm. The waveguide also features a low polarization mode dispersion.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: December 7, 2004
    Assignee: Corning Incorporated
    Inventor: Yanming Liu
  • Patent number: 6821449
    Abstract: This invention relates to a method of preparing an optical fiber preform with the preform having a uniform refractive index profile for the deposited oxide material that ultimately forms the optical fiber core. One embodiment of the invention relates to a process for preparing an optical fiber preform comprising the steps of etching a substrate a first time to remove a portion of a deposited oxide material from the preform by using a gas comprising an etchant gas containing fluorine at a sufficient temperature and gas concentration to create a fluorine contamination layer in the remaining deposited oxide material; and etching the preform a second time using a gas comprising an etchant gas containing fluorine at a sufficient temperature and gas concentration to remove the fluorine contamination layer without any substantial further fluorine contamination of the remaining deposited oxide material. Further embodiments relate to similar processes.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: November 23, 2004
    Assignee: Corning Incorporated
    Inventors: Julie E. Caplen, Jean-Philippe J. deSandro, Joohyun Koh
  • Patent number: 6810197
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 26, 2004
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, III, Dale R. Powers, James A. West
  • Patent number: 6810187
    Abstract: A coated optical fiber and a curable coating composition for coating an optical fiber, includes a block copolymer comprising at least one hard block and at least one soft block, wherein said hard block has a Tg greater than the Tg of the soft block. The coating may further include at least one reactive monomer. A method for making a coated optical fiber, includes providing an optical fiber; coating the optical fiber with a polymerizable composition including a block copolymer comprising at least one hard block and at least one soft block, wherein said hard block has a Tg greater than the Tg of the soft block. The coating may further include at least one reactive monomer. The method further includes polymerizing the composition under conditions effective to form a coating over the optical fiber.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: October 26, 2004
    Assignee: Corning Incorporated
    Inventors: Michelle D. Fabian, Edward J. Fewkes, Gregory F. Jacobs, Frederic C. Wagner, Inna I. Kouzmina, Michael L. Sorensen
  • Patent number: 6796270
    Abstract: This invention relates to a device for performing plasma chemical vapor deposition (PCVD) for producing coated glass tubes for the drawing of optical fibers. This invention further relates to a device that uses a microwave applicator, and the applicator itself with a profile that allows for a uniform coating across a greater length of the glass tube.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: September 28, 2004
    Assignee: Corning Incorporated
    Inventors: Keith L House, Barton G Lane, III, William B Mattingly, III
  • Patent number: 6792187
    Abstract: Glasses in the Ca—Al—Si system are useful in forming optical components for use in telecommunication systems. The glasses include, in mole percent: SiO2 present in an amount of about 6 to about 60 percent, Ga2O3, Al2O3, or a combination thereof present in an amount of about 12 to about 31 percent, and CaO present in an amount of about 20 to about 65 percent.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 14, 2004
    Assignee: Corning Incorporated
    Inventors: Ronald L. Andrus, Stephan L. Logunov, Sabyasachi Sen
  • Patent number: 6785456
    Abstract: Optical fibers of different physical characteristics are combined to produce a hybrid fiber which, at the operating wavelength, has a relatively large effective area and desirable net dispersion and attenuation characteristics over the combined length of the hybrid system. Hybrid fibers are constructed in accordance with the principles of the invention by optically connecting a first fiber having a large effective area (greater than 85 &mgr;m2), an attenuation less than 0.19 dB/km and a dispersion greater than 10 ps/nm/km at 1550 nm, to a second fiber having an effective area which is smaller than the first fiber, a dispersion which is less than 10 ps/nm/km, and an attenuation which is less than 0.23 dB/km at 1550 nm. Both the first and second fibers preferably have a positive dispersion slope at 1550 nm. The first and second fibers are preferably spliced directly together.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: August 31, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, William D. Cornwell, Nigel H. Taylor, Thomas J. Atwood
  • Patent number: 6775451
    Abstract: The present invention relates to a composition for coating optical fibers that includes an oligomeric component present in an amount of about 15 weight percent or less and a monomeric component present in an amount of about 75 weight percent or more, where the cured product of the composition has a Young's modulus of at least about 650 MPa. When the composition is substantially devoid of the oligomeric component, the monomeric component preferably includes two or more monomers. Also disclosed are the cured products of the compositions of the present invention, optical fibers that contain secondary coatings prepared from the compositions of the present invention, methods of making such optical fibers, as well as fiber optic ribbons containing a matrix prepared from the compositions of the present invention.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: August 10, 2004
    Assignee: Corning Incorporated
    Inventors: John W. Botelho, Gregory F. Jacobs, Huan-Hung Sheng, Michael J. Winningham
  • Patent number: 6767579
    Abstract: A method of protecting a silica-containing article used in the manufacture of an optical fiber includes the step of applying to the silica-containing article a protective layer that facilitates removal of particulates that deposit on the protective layer and that ablates during or can be removed before subsequent processing of the silica-containing article. An intermediate product used in the manufacture of an optical fiber and protected against break-inducing particulates includes a silica-containing article, and a protective layer that facilitates removal of particulates that have deposited on the protective layer and that can be ablated during or removed before subsequent processing of the intermediate product.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 27, 2004
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, G. Scott Glaesemann, William B. Mattingly, III
  • Patent number: 6760526
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: July 6, 2004
    Assignee: Corning Incorporated
    Inventors: Adam J. G. Ellison, Rostislav R. Khrapko
  • Patent number: 6757456
    Abstract: An optical fiber selection system automatically recommends an appropriate optical fiber type for a communication network, based on input from a user. In one embodiment, the system includes a user computer system that is in communication with a vendor computer system. The vendor computer system executes code and performs a number of steps. Initially, the vendor computer system receives at least one technical parameter associated with the proposed communication network from the user, via the user computer system. Next, the vendor computer system automatically selects an optical fiber type for the communication network based on the least one technical parameter. Finally, the vendor computer system provides the selected optical fiber type to the user, via the user computer system.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: June 29, 2004
    Assignee: Corning Incorporated
    Inventors: Michael A. McDonald, Kendall D. Musgrove, Robert J. Whitman
  • Patent number: RE39028
    Abstract: Disclosed is a single made optical waveguide fiber having a segmented core design. In particular, the core comprises three segments, each having characteristic dimensions and refractive index profile. By proper choice of index profile in each segment, a waveguide fiber is made which has a mode field diameter of about 9.5, low, positive total dispersion over the operating window 1530 nm to 1565 nm as well as effective area greater than 60 ?m2.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: March 21, 2006
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Yanming Liu, Daiping Ma, David Kinney Smith