Patents Represented by Attorney Robert P. Santandrea
  • Patent number: 7506521
    Abstract: Disclosed are high purity synthetic silica material having an internal transmission at 193 nm of at least 99.65%/cm and method of preparing such material. The material is also featured by a high compositional homogeneity in a plane transverse to the intended optical axis. The soot-to-glass process for making the material includes a step of consolidating the soot preform in the presence of H2O and/or O2.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: March 24, 2009
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Kenneth Edward Hrdina, Lisa Anne Moore, Susan Lee Schiefelbein
  • Patent number: 7506522
    Abstract: Disclosed are high purity synthetic silica glass material having a high OH concentration homogeneity in a plane perpendicular to the optical axis, and process of making the same. The glass has high refractive index homogeneity. The glass can have high internal transmission of at least 99.65%/cm at 193 nm. The process does not require a post-sintering homogenization step. The controlling factors for high compositional homogeneity, thus high refractive index homogeneity, include high initial local soot density uniformity in the soot preform and slow sintering, notably isothermal treatment during consolidation.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: March 24, 2009
    Assignee: Corning Incorporated
    Inventors: Daniel Joseph Bleaking, Dana C. Bookbinder, Richard M. Fiacco, Kenneth E. Hrdina, Pushkar Tandon, John E. Maxon, Kimberly Ann Wilbert
  • Patent number: 7457037
    Abstract: Disclosed is a polarizing, transparent optical product, the structure of which comprises a basic transparent substrate of an inorganic or organic material and, on at least one part of the external surface of said basic substrate, a polarizing coating. Said polarizing coating is fixed, in a stable manner, to said substrate and has a stratified structure which includes: a polymer layer, which is fixed to the external surface of said substrate, directly or via a coupling under-layer; a film of colorant(s) having polarizing properties, on said polymer layer; and a protective layer on said film of colorant(s). Also disclosed is a method of manufacturing such a polarizing, transparent optical product. The invention may be used for any type of substrate material, inorganic or organic, thermoplastic or thermoset.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: November 25, 2008
    Assignee: Corning Incorporated
    Inventor: David Henry
  • Patent number: 7393762
    Abstract: A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 1, 2008
    Assignee: Los Alamos National Secruity, LLC
    Inventors: Mark Hoffbauer, Alex Mueller
  • Patent number: 7358206
    Abstract: The present invention relates to a boroaluminosilicate glass which exhibits excellent UV transmission. In particular, the present invention is directed at an alkali fluorine-doped boroaluminosilicate glass comprising, in mole percent on the oxide basis, of 30-80% SiO2, 1-20% Al2(O, F2)3, 5-35% B2O3, 5-20% R2O, where R is Li, Na, K, Rb or Cs, and an amount of up to 12% of F. The glass possesses an R/Al molar ratio of between 0.4 to 3 and an F/O molar ratio of no greater than 0.35. The alkali fluorine-doped boroaluminosilicate glass of the present invention exhibits a UV transmission at 300 nm, of greater than 80%/mm.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 15, 2008
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Gillmar Ellison
  • Patent number: 7318904
    Abstract: A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 15, 2008
    Assignee: Los Alamos National Security, LLC
    Inventors: Hsing-Lin Wang, Wenguang Li
  • Patent number: 7307714
    Abstract: Disclosed are process and apparatus for inspecting internal inclusions in internally transmissive substrates. The process involves applying a black coating to one major surface of the substrate, submerging the substrate in a refractive index-matching fluid, and scanning the substrate with a collimated light beam. The scattered light signals produced by the inclusions can be detected by the human eye or by using a light detector. By the use of index-matching fluid and the black coating, the signal-to-noise ratio of the process and apparatus are enhanced. A preferred black coating is one cured from an electron beam or photo polymerizable coating composition applied to the major surface. The process and apparatus are particularly suitable for inspecting internal inclusions in an internally transmissive substrate having considerable amount of surface defects or contoured surface that prevent it from inspection in a gas medium.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: December 11, 2007
    Assignee: Corning Incorporated
    Inventors: David G. Cyr, Christopher P. Daigler, David R. Fladd, David C. Jenne, Albert R. Nieber, Nikki Jo Russo, Paul J. Shustack
  • Patent number: 7288332
    Abstract: A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: October 30, 2007
    Assignee: Los Almos National Security, LLC
    Inventors: Alp T. Findikoglu, Vladimir Matias
  • Patent number: 7138462
    Abstract: A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: November 21, 2006
    Assignee: Los Alamos National Security, LLC
    Inventors: Barbara F. Smith, Thomas W. Robison
  • Patent number: 7125578
    Abstract: A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C60 acceptor layers.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: October 24, 2006
    Assignee: Los Alamos National Security, LLC
    Inventor: Duncan W. McBranch
  • Patent number: 6948448
    Abstract: A method and apparatus for depositing a uniform coating on a large area, planar surface using an array of multiple plasma sources and a common reactant gas injector. The apparatus includes at least one array of a plurality of plasma sources, wherein each of the plurality of plasma sources includes a cathode, an anode, and an inlet for a non-reactive plasma source gas disposed in a plasma chamber, and a common reactant gas injector disposed in a deposition chamber that contains the substrate. The common reactant gas injector provides a uniform flow of at least one reactant gas to each of the multiple plasmas generated the multiple plasma sources through a single delivery system. The at least one reactant gas reacts with the plurality of plasmas to form a uniform coating on a substrate.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: September 27, 2005
    Assignee: General Electric Company
    Inventor: Marc Schaepkens
  • Patent number: 6868676
    Abstract: A turbine containing system is disclosed. The system includes an intake section, a compressor section downstream from the intake section, a combustor section having a primary combustion system downstream from the intake section, a secondary combustion system downstream from the primary combustion system, a turbine section, an exhaust section and a load. The secondary combustion system includes an injector for transversely injecting a secondary fuel into a stream of combustion products of the primary combustion system. The injector including a coupling, a wall defining an airfoil shape circumscribing a fuel mixture passage, and at least one exit for communication between said fuel mixture passage and said stream of primary combustion products.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: March 22, 2005
    Assignee: General Electric Company
    Inventor: Joel Meier Haynes
  • Patent number: 6849299
    Abstract: A method of introducing small amounts of a refractory element into a vapor deposition coating. A second material (30), containing at least two elements which are desired to be deposited as a coating on a base material, has placed over it a first material (20) substantially comprising such two elements and a refractory element. The first material (20) is adapted to permit transport of the at least two elements in the second material (30) through the first material (20) when the first (20) and second (30) material are in a molten state and in touching contact with the other so as to permit evaporation of the two elements and the refractory element from an exposed surface. Heat is supplied to the first (20) and second (30) materials to permit evaporation of the at least two elements of second material (30) and the refractory element in the first material (20), and the resulting vapors are condensed as a deposit on a base material (50).
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Reed Roeder Corderman, Melvin Robert Jackson, Richard Arthur Nardi, Jr.
  • Patent number: 6821399
    Abstract: An apparatus for cathodic arc coating. The apparatus includes: a vacuum chamber which includes: an anode; a power supply; and a cathode target assembly connected to the power supply. The cathode target assembly includes a cathode target having an interference fit stud with a threadless distal end. In the preferred embodiment, the distal end of the threadless cathode target also includes a pre-determined surface texture and a cooling block in contact with the cathode target.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: November 23, 2004
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Don Mark Lipkin, Reed Roeder Corderman, Terry Clifford Cooper
  • Patent number: 6806508
    Abstract: A photodetector comprising a gallium nitride substrate, at least one active layer disposed on the substrate, and a conductive contact structure affixed to the active layer and, in some embodiments, the substrate. The invention includes photodetectors having metal-semiconductor-metal structures, P-i-N structures, and Schottky-barrier structures. The active layers may comprise Ga1−x−yAlxInyN1−z−wPzAsw, or, preferably, Ga1−xAlxN. The gallium nitride substrate comprises a single crystal gallium nitride wafer and has a dislocation density of less than about 105 cm−2. A method of making the photodetector is also disclosed.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: October 19, 2004
    Assignee: General Electic Company
    Inventors: Mark Philip D'Evelyn, Nicole Andrea Evers, Kanin Chu
  • Patent number: 6797380
    Abstract: A nanoparticle comprising an inorganic core and a polymerizable outer coating. The inorganic core comprises a substantially crystalline inorganic material such as a superparamagnetic material. In one embodiment, the inorganic core comprises a single crystal mixed spinel ferrite comprising iron in a first oxidation state and at least one metal in a second oxidation state, wherein the second oxidation state is different from the first oxidation state.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: September 28, 2004
    Assignee: General Electric Company
    Inventors: Peter John Bonitatebus, Jr., Havva Yagci Acar, Michael Larsen
  • Patent number: 6793883
    Abstract: A method and system for reducing stress corrosion cracking in a hot water system, such as a nuclear reactor, by reducing the electrochemical corrosion potential of components exposed to high temperature water within the structure. The method includes the steps of: providing a reducing species to the high temperature water; and providing a plurality of noble metal nanoparticles having a mean particle size of up to about 100 nm to the high temperature water during operation of the hot water system. The catalytic nanoparticles, which may contain at least one noble metal, form a colloidal suspension in the high temperature water and provide a catalytic surface on which a reducing species reacts with least one oxidizing species present in the high temperature water. The concentration of the oxidizing species is reduced by reaction with the reducing species on the catalytic surface, thereby reducing the electrochemical corrosion potential of the component.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: September 21, 2004
    Assignee: General Electric Company
    Inventors: Peter Louis Andresen, Thomas Martin Angeliu, Young Jin Kim, Thomas Pompilio Diaz, Samson Hettiarachchi
  • Patent number: 6788379
    Abstract: A flexible liquid crystal display comprising two plates that are substantially parallel to each other. Each of the plates includes a polymeric substrate having a roughness of up to about 5 nm, a barrier coating disposed on a surface of the polymeric substrate, and a transparent conductive layer disposed on a surface of the barrier coating opposite the polymeric substrate. A liquid crystal material is interposed between the two plates, such that the liquid crystal material contacts the transparent conductive layer on each of the two plates. The invention also includes a barrier coated polymer sheet for use in a liquid crystal display having a polycarbonate substrate with a roughness up to about 5 nm and a barrier coating, such as silicon nitride or silicon oxide, having a density of at least 1.8 g/cc disposed on a surface of the polycarbonate substrate. A method of making the barrier coated polymer sheet is also described.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: September 7, 2004
    Assignee: General Electric Company
    Inventor: Argemiro Soares DaSilva Sobrinho
  • Patent number: 6743524
    Abstract: An article comprising a substrate having a barrier layer. The barrier layer is disposed on the surface of the substrate and resistant to transmission of moisture and oxygen. Methods of depositing such a barrier layer on the substrate are also disclosed. The article may include additional layers, such as, but not limited to, an adhesion layer, abrasion resistant layers, radiation-absorbing layers, radiation-reflective layers, and conductive layers. Such articles include, but are not limited to, light emitting diodes (LEDs), liquid crystal displays (LCDs), photovoltaic articles, electrochromic articles, and organic electroluminescent devices (OELDs).
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: June 1, 2004
    Assignee: General Electric Company
    Inventor: Marc Schaepkens
  • Patent number: 6737121
    Abstract: According to an exemplary embodiment of the invention, a method of forming a plurality of layers on an article comprises steps of generating a plasma by forming an arc between a cathode and an anode; injecting a first material comprising an organic compound into the plasma to deposit a first layer on the article; injecting a second material comprising an organometallic material into the plasma to form a second layer on the first layer; and injecting a third material comprising a silicon containing organic compound into the plasma to deposit a third layer on the second layer. The invention also relates to an article of manufacture comprising a substrate; an interlayer disposed on the substrate; a second layer disposed on the interlayer, the second layer comprising an inorganic ultraviolet absorbing material; and a third layer disposed on the second layer, the third layer comprising an abrasion resistant material.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 18, 2004
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Charles Dominic Iacovangelo