Patents Represented by Attorney, Agent or Law Firm Theresa A. Lober
  • Patent number: 8282746
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: October 9, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Patent number: 8273532
    Abstract: In a molecular analysis system, there is provided a structure including a nanopore and first and second fluidic reservoirs. The two reservoirs are fluidically connected via the nanopore. A detector is connected to detect molecular species translocation of the nanopore, from one of the two fluidic reservoirs to the other of the two fluidic reservoirs. A controller is connected to generate a control signal to produce conditions at the nanopore to induce the molecular species to re-translocate the nanopore at least once after translocating the nanopore. This enables a method for molecular analysis in which a molecular species is translocated a plurality of times through a nanopore in a structure between two fluidic reservoirs separated by the structure.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: September 25, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Marc H. Gershow, Jene A. Golovchenko, Daniel Branton
  • Patent number: 8273257
    Abstract: In a method for processing a nanotube, a vapor is condensed to a solid condensate layer on a surface of the nanotube and then at least one selected region of the condensate layer is locally removed by directing a beam of energy at the selected region. The nanotube can be processed with at least a portion of the solid condensate layer maintained on the nanotube surface and thereafter the solid condensate layer removed. Nanotube processing can include, e.g., depositing a material layer on an exposed nanotube surface region where the condensate layer was removed. After forming a solid condensate layer, an electron beam can be directed at a selected region along a nanotube length corresponding to a location for cutting the nanotube, to locally remove the condensate layer at the region, and an ion beam can be directed at the selected region to cut the nanotube at the selected region.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: September 25, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A Golovchenko, Gavin M King, Gregor M Schurmann, Daniel Branton
  • Patent number: 8221595
    Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing an ion beam at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: July 17, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Jene A Golovchenko, Gavin M King, Warren J MoberlyChan, Gregor M Schurmann
  • Patent number: 8206568
    Abstract: The invention provides a method for molecular analysis. In the method, sidewalls are formed extending through a structure between two structure surfaces, to define an aperture. A layer of material is deposited on the aperture sidewalls and the two structure surfaces. The aperture with the deposited material layer is then configured in a liquid solution with a gradient in a chemical potential, between the two structure surfaces defining the aperture, that is sufficient to cause molecular translocation through the aperture.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 26, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Roy G. Gordon, Peng Chen, Toshiyuki Mitsui, Damon B. Farmer, Jene A. Golovchenko
  • Patent number: 8173010
    Abstract: The invention relates to materials used as electrodes and/or catalysts, as well as methods associated with the same. The materials may comprise an alloy or intermetallic compound of a transition metal (e.g., Ni) and a metal additive (e.g., Sn). The transition metal and additive are selected to provide improved electrode and/or catalytic performance. For example, the materials of the invention may have a high catalytic activity, while being less susceptible to coking than certain conventional electrode/catalytic materials. These performance advantages can simplify the equipment used in certain applications, as well as reducing energy and capital requirements. Furthermore, the materials may be manufactured using traditional ceramic processing methods, without the need for complex, unconventional fabrication techniques. The materials are particularly suitable for use in fuel cells (e.g., SOFCs electrodes) and in reactions that use or produce synthesis gas.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: May 8, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Steven E. Weiss
  • Patent number: 8119032
    Abstract: The invention provides methods functionalizing a planar surface of a graphene layer, a graphite surface, or microelectronic structure. The graphene layer, graphite surface, or planar microelectronic structure surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the graphene layer, a graphite surface, or planar microelectronic surface while providing a functionalization layer of chemically functional groups, to produce a functionalized graphene layer, graphite surface, or planar microelectronic surface.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 21, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer, Charles M. Marcus, James R. Williams
  • Patent number: 8092697
    Abstract: In a method for fabricating a molecule characterization device, there is formed an aperture in a support structure, and electrical contact pads are formed on a selected surface of the support structure for connection to molecular analysis circuitry. Then at the aperture is provided at least one carbon nanotube. An electrically insulating layer is deposited on walls of the aperture to reduce an extent of the aperture and form a smaller aperture, while depositing substantially no insulating layer on a region of the nanotube that is at the aperture.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 10, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Jene A Golovchenko
  • Patent number: 8093624
    Abstract: A photodiode is provided by the invention, including an n-type active region and a p-type active region. A first one of the n-type and p-type active regions is disposed in a semiconductor substrate at a first substrate surface. A second one of the n-type and p-type active regions includes a high-field zone disposed beneath the first one of the active regions at a first depth in the substrate, a mid-field zone disposed laterally outward of the first active region at a second depth in the substrate greater than the first depth, and a step zone connecting the high-field zone and the mid-field zone in the substrate.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: January 10, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew J. Renzi, Brian F. Aull, Robert K. Reich, Bernard B. Kosicki
  • Patent number: 8008014
    Abstract: In a molecular analysis system, there is provided a structure including a nanopore and first and second fluidic reservoirs. The two reservoirs are fluidically connected via the nanopore. A detector is connected to detect molecular species translocation of the nanopore, from one of the two fluidic reservoirs to the other of the two fluidic reservoirs. A controller is connected to generate a control signal to produce conditions at the nanopore to induce the molecular species to re-translocate the nanopore at least once after translocating the nanopore. This enables a method for molecular analysis in which a molecular species is translocated a plurality of times through a nanopore in a structure between two fluidic reservoirs separated by the structure.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 30, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Marc H. Gershow, Jene A. Golovchenko, Daniel Branton
  • Patent number: 7993538
    Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: August 9, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Gavin M. King, Gregor M. Schurmann, Daniel Branton
  • Patent number: 7969079
    Abstract: A carbon nanotube device in accordance with the invention includes a free-standing membrane that is peripherally supported by a support structure. The membrane includes an aperture that extends through a thickness of the membrane. At least one carbon nanotube extends across the aperture on a front surface of the membrane. The carbon nanotube is also accessible from a back surface of the membrane.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: June 28, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Haibing Peng, Daniel Branton
  • Patent number: 7831123
    Abstract: The invention provides a waveguide with a waveguide core having longitudinal sidewall surfaces, a longitudinal top surface, and a longitudinal bottom surface that is disposed on a substrate. An interface layer is disposed on at least one longitudinal sidewall surface of the waveguide core. A waveguide cladding layer is disposed on at least the waveguide core sidewall and top surfaces, over the interface layer. The waveguide of the invention can be produced by forming a waveguide undercladding layer on a substrate, and then forming a waveguide core on the undercladding layer. An interface layer is then formed on at least a longitudinal sidewall surface of the waveguide core, and an upper cladding layer is formed on a longitudinal top surface and on longitudinal sidewall surfaces of the waveguide core, over the interface layer.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 9, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel K. Sparacin, Anuradha M. Agarwal, Pradip K. Roy, Lionel C. Kimerling
  • Patent number: 7803607
    Abstract: There is provided a first reservoir containing a liquid solution including a molecule to be characterized and a second reservoir for containing a liquid solution including a molecule that has been characterized. A solid state support structure is provided including an aperture having a molecular entrance providing a fluidic connection to the first reservoir and a molecular exit providing a fluidic connection to the second reservoir. One carbon nanotube is provided having a longitudinal sidewall disposed as a molecular contacting surface at the aperture. A voltage source is connected in series with the carbon nanotube for electrically biasing the carbon nanotube, and an electrical current monitor is connected in series with the carbon nanotube for monitoring changes in electrical current through the nanotube corresponding to translocation of a molecule through the aperture.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: September 28, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Jene A Golovchenko
  • Patent number: 7805029
    Abstract: There is provided a feedback-controlled self-heat-monitoring fiber, including an insulator having a fiber length with at least one metal-semiconductor-metal thermal sensing element along the fiber length and disposed at a position in a cross section of the fiber for sensing changes in fiber temperature. An electronic circuit is connected to the thermal sensing element for indicating changes in fiber temperature. A controller is connected for controlling optical transmission through an optical transmission element, that is disposed along the fiber length, in response to indications of changes in fiber temperature.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: September 28, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Mehmet Bayindir, Fabien Sorin, Ayman F. Abouraddy, Ofer Shapira, Jeremy R. Arnold, Yoel Fink, John D Joannopoulos
  • Patent number: 7767114
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: August 3, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Patent number: 7709544
    Abstract: In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: May 4, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Patrick S. Doyle, Daniel C. Pregibon, Dhananjay Dendukuri
  • Patent number: 7582490
    Abstract: A method for controlling a gap in an electrically conducting solid state structure provided with a gap. The structure is exposed to a fabrication process environment conditions of which are selected to alter an extent of the gap. During exposure of the structure to the process environment, a voltage bias is applied across the gap. Electron tunneling current across the gap is measured during the process environment exposure and the process environment is controlled during process environment exposure based on tunneling current measurement. A method for controlling the gap between electrically conducting electrodes provided on a support structure. Each electrode has an electrode tip separated from other electrode tips by a gap. The electrodes are exposed to a flux of ions causing transport of material of the electrodes to corresponding electrode tips, locally adding material of the electrodes to electrode tips in the gap.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 1, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Gregor M. Schürmann, Gavin M. King, Daniel Branton
  • Patent number: 7567740
    Abstract: There is provided a thermal sensing fiber including a semiconducting element having a fiber length and characterized by a bandgap energy corresponding to a selected operational temperature range for the fiber in which there can be produced a change in thermally-excited electronic charge carrier population in the semiconducting element in response to a temperature change in the selected temperature range. At least one pair of conducting electrodes is provided in contact with the semiconducting element along the fiber length, and an insulator is provided along the fiber length.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 28, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Mehmet Bayindir, Fabien Sorin, Ayman F. Abouraddy, Ofer Shapira, Jerimy R. Arnold, Yoel Fink, John D. Joannopoulos
  • Patent number: 7524431
    Abstract: The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: April 28, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Jene A. Golovchenko, Gavin M. King, Warren J. MoberlyChan, Gregor M. Schürmann