Patents Represented by Attorney, Agent or Law Firm Thomas A. Yassen
  • Patent number: 7405340
    Abstract: A process for recovering paraxylene from a substantially hydrocarbon feedstock. The recovery comprises cooling the hydrocarbon feedstock in at least one refrigerated crystallization stage that is indirectly refrigerated by evaporating at least a portion of a substantially liquid stream comprising ammonia. The crystallization stage may also be cooled by an ethylene refrigerant, which has been cooled by heat exchange with a substantially liquid stream comprising ammonia. The process further comprises a series of cooling substeps. This invention is also directed to an ammonia absorption refrigeration process powered by an enthalpy source from or near a paraxylene recovery unit.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: July 29, 2008
    Assignee: BP Corporation North America Inc.
    Inventor: Jeffrey A. Amelse
  • Patent number: 7381858
    Abstract: Processes are disclosed for production of purified products from a fluid mixtures of C8 aromatics by means of integration of perm-selective separations with purified product recovery operations. The perm-selective separations of the invention comprise of one or more devices using polymeric perm-selective membrane devices to separate a meta-xylene enriched stream from fluid mixtures of C8 aromatics thereby producing a fluid comprising the remaining aromatic compounds which advantageously includes para-xylene. Processes of the invention are particularly useful for recovery of very pure meta-xylene and para-xylene co-products from liquid mixtures even containing ethylbenzene as well as the three xylene isomers.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 3, 2008
    Assignee: BP Corporation North America Inc.
    Inventors: George A. Huff, Jr., Bo Chen, Craig W. Colling, Jeffrey T. Miller
  • Patent number: 7358414
    Abstract: Processes and apparatus are disclosed for recovery of purified products from a fluid mixture by means of integrated perm-selective separations with purified product recovery operations. More particularly, integrated processes of the invention comprise separations by means of one or more devices using polymeric membranes coupled with recovery of purified products by means of fractional crystallization and/or selective sorption. Processes of the invention are particularly useful for recovery of a very pure aromatic isomer when processing aromatic starting materials, for example, a pure para-xylene product from liquid mixtures even containing ethylbenzene as well as the three xylene isomers.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: April 15, 2008
    Inventors: Jeffrey T. Miller, Bo Chen, Craig W. Colling, George A. Huff, Jr., Marvin L. Cadwell
  • Patent number: 7271305
    Abstract: Disclosed herein is an improved method for making and obtaining para-xylene from a mixture of xylene isomers, and various embodiments of the method. The method generally includes contacting a mixture comprising xylene isomers and ethylbenzene with a para-xylene selective adsorbent to obtain a para-xylene depleted raffinate, and a desorption effluent comprising a para-xylene enriched product. The method also includes isomerizing the para-xylene depleted raffinate. The contacting step is carried out in a manner such that the raffinate need not be pressurized prior to isomerization, thus advantageously obviating expensive compression steps.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: September 18, 2007
    Assignee: BP Corporation North America Inc.
    Inventors: Bryce A. Williams, Ruth Ann Doyle, Jeffrey T. Miller
  • Patent number: 7122496
    Abstract: Adsorbent compositions for vapor-phase adsorption processes, which are selective for para-xylene. Such compositions can be used in gas-phase adsorption processes for the separation of para-xylene or the separation of para-xylene and ethylbenzene from mixed xylenes or a C8 aromatic mixture, respectively. The adsorbent compositions generally comprise materials of a molecular sieve material and a binder, wherein the adsorbent composition has a macropore volume of at least about 0.20 cc/g and a mesopore volume of less than about 0.20 cc/g.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 17, 2006
    Assignee: BP Corporation North America Inc.
    Inventors: Ruth Ann Doyle, Bryce A. Williams, Jeffrey T. Miller
  • Patent number: 6986802
    Abstract: Apparatus and processes are disclosed for economical separation of fluid mixtures utilizing perm-selective membranes. Broadly, apparatus of the invention comprises a plurality of membrane modules comprising a solid perm-selective membrane and equipment for controlling enthalpy of selected fluids within the apparatus. Advantageously, the membrane modules are disposed in a first product group, a second product group, and at least one intermediate group. Apparatus of the invention is particularly useful for simultaneous recovery of a very pure permeate product, and/or a desired non-permeate stream, from fluid mixtures of two or more compounds which when subjected to appropriately altered conditions of temperature and/or pressure exhibit a bubble point.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: January 17, 2006
    Assignee: BP Corporation North America Inc.
    Inventors: Craig W. Colling, Bo Chen, George A. Huff, Jr.
  • Patent number: 6749829
    Abstract: The present invention is directed to a process for producing synthesis gas comprising the steps of reacting a hydrogen-containing stream with an oxygen-containing stream and producing an oxidized stream comprising water; contacting a feedstream comprising hydrocarbon or hydrocarbon comprising at least one atom of oxygen with the oxidized stream comprising water and forming a reforming feedstream; and passing the reforming feedstream into a reforming reaction zone at reforming reaction conditions and producing a synthesis gas product.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: June 15, 2004
    Assignee: BP Corporation North America Inc.
    Inventor: Michael D. Briscoe
  • Patent number: 6743829
    Abstract: An integrated process for producing LNG and GTL products is provided comprising cooling natural gas in at least one cooling step so as to provide a cooled natural gas stream; processing the cooled natural gas stream in at least two expansion/separation cycles, each expansion/separation cycle comprising the Substeps of (a) isentropically or isenthalpically expanding at least a portion of the cooled natural gas steam for producing a natural gas vapor component and a LNG component, (b) separating at least a portion of the natural gas vapor component from the LNG component, and (c) repeating substeps (a) through (b) wherein at least a portion of the LNG component from the previous expansion/separation cycle is directed to each successive Substep (a) and wherein the final LNG product is the LNG component after the final separating step and is substantially liquid at substantially atmospheric pressure; and converting at least a portion of one or more of the expansion/separation cycle natural gas vapor components in
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 1, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Ernesto Fischer-Calderon, Michael D. Briscoe, Michael J. Gradassi, Jeffrey H. Sawchuk
  • Patent number: 6689929
    Abstract: A pressure swing adsorption process to separate para-xylene and ethylbenzene from a C8 aromatics stream produced by toluene conversion uses a para-selective adsorbent, preferably a non-acidic, medium pore molecular sieve of the MFI structure type, and is operated isothermally in the vapor phase at elevated temperatures and pressures. A fixed bed of adsorbent is saturated with pX and EB, which are preferentially adsorbed, then the feed to the process is stopped. Lowering the partial pressure desorbs the pX and EB giving a pX/EB-rich effluent. A stream of non-adsorbed mX and oX may be obtained before desorbing pX and EB.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 10, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Bryce A. Williams, Jeffrey T. Miller, Ruth Ann Doyle, Giorgio Zoia
  • Patent number: 6627783
    Abstract: A pressure swing adsorption process to separate para-xylene and ethylbenzene from C8 aromatics uses a para-selective adsorbent, preferably a non-acidic, medium pore molecular sieve of the MFI structure type, and is operated isothermally in the vapor phase at elevated temperatures and pressures. A fixed bed of adsorbent is saturated with para-xylene and ethylbenzene, which are preferentially adsorbed, then the feed to the process is stopped. Lowering the partial pressure desorbs the para-xylene and ethylbenzene. The process effluent is rich in para-xylene and ethylbenzene. A stream of non-adsorbed meta-xylene and ortho-xylene may be obtained prior to desorption of para-xylene and ethylbenzene.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: September 30, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Ruth Ann Doyle, Jeffrey T. Miller, Kevin A. Kunz
  • Patent number: 6600083
    Abstract: A pressure swing adsorption process to separate para-xylene and ethylbenzene from C8 aromatics which uses a para-selective, non-acidic, medium pore molecular sieve of the MFI structure type and is operated isothermally in the vapor phase at elevated temperatures and pressures is integrated with crystallization to produce para-xylene product. A fixed bed of adsorbent is saturated with pX and EB, which are preferentially adsorbed, the feed is stopped, and lowering the partial pressure desorbs the pX and EB. The process effluent, which is rich in pX and EB, is crystallized to obtain para-xylene product.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: July 29, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Ruth Ann Doyle, Jeffrey T. Miller, Richard A. Wilsak, Scott A. Roberts, Giorgio Zoia
  • Patent number: 6573418
    Abstract: A pressure swing adsorption process to separate para-xylene and ethylbenzene from C8 aromatics which uses a para-selective, non-acidic, medium pore molecular sieve of the MFI structure type and is operated isothermally in the vapor phase at elevated temperatures and pressures is integrated with simulated moving bed adsorption (SiMBAC) to produce para-xylene product. A fixed bed of adsorbent is saturated with pX and EB, which are preferentially adsorbed, the feed is stopped, and lowering the partial pressure desorbs the pX and EB. The process effluent, which is rich in pX and EB, is subjected to SiMBAC to obtain para-xylene product.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: June 3, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Jeffrey T. Miller, Bryce A. Williams, Ruth Ann Doyle, Giorgio Zoia
  • Patent number: 6565653
    Abstract: The invention is a novel energy efficient process to produce high purity paraxylene from a feed comprising at least 55 to 60 wt % paraxylene, wherein a first portion of high purity paraxylene product is obtained in a first crystallization step at about 10° F. to about 55° F. without the need for further reslurry and recrystallization, and wherein another portion of the high purity paraxylene product is obtained following a reslurry step which warms crystalline paraxylene obtained from subsequent lower temperature crystallizations to yield a slurry at a temperature of about 10° F. to about 55° F. without the need for further refrigeration.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: May 20, 2003
    Assignee: BP Corporation North America Inc.
    Inventor: Richard A. Wilsak
  • Patent number: 6564578
    Abstract: The present invention is directed to a process for producing LNG by directing a feed stream comprising natural gas to a cooling stage that (a) cools the feed stream in at least one cooling step producing a cooled feed stream, (b) expands the cooled feed stream in at least one expansion step by reducing the pressure of the cooled feed stream producing a refrigerated vapor component and a liquid component, and (c) separates at least a portion of the refrigerated vapor component from the liquid component wherein at least a portion of the cooling for the process is derived from at least a portion of the refrigerated vapor component; and repeating steps (a) through (c) one or more times until at least substantial portion of the feed stream in the first cooling stage is processed into LNG wherein the feed stream in step (a) comprises at least a portion of the liquid component produced from a previous cooling stage.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: May 20, 2003
    Assignee: BP Corporation North America Inc.
    Inventor: Ernesto Fischer-Calderon
  • Patent number: 6544404
    Abstract: The invention relates to a process for the separation of oxygen from an oxygen-containing fluid using novel membranes, formed from perovskitic or multi-phase structures, with a chemically active coating. The process exhibits exceptionally high rates of oxygen flux. The process uses membranes that are conductors of oxygen ions and electrons, which are substantially stable in air over the temperature range of 25° C. to the operating temperature of the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 8, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 6488739
    Abstract: The invention relates to a process for the production of oxygen using novel membranes, formed from perovskitic or multi-phase structures, with a chemically active coating which demonstrate exceptionally high rates of fluid flux. The process uses membranes that are conductors of oxygen ions and electrons, which are substantially stable in air over the temperature range of 25° C. to the operating temperature of the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 3, 2002
    Assignee: BP Corporation North America Inc.
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 6332968
    Abstract: Electrochemical processes using solid gas-impervious membranes are disclosed for gas cleanup by (A) providing an electrochemical cell comprising first and second zones separated by a solid gas-impervious membrane comprising a mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity, (B) passing a gas containing N2O, NO, NO2, SO2, SO3, or a mixture thereof, in contact with the membrane in the first zone, and (C) passing a gas capable of reacting with oxygen in contact with the membrane in the second zone. More particularly, the mixed metal oxide material of a perovskite structure comprises a combination of elements selected from the group consisting of lanthanides, alkaline earth metals, Y, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, and Nb, oxides thereof, and mixtures of these metals and metal oxides. Advantageously a catalyst is present in the first zone.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: December 25, 2001
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 6324827
    Abstract: A method of generating power by passing a dimethyl ether-containing fuel to a dry low NOx combustor of a fired turbine-combustor in the presence of an oxygen-containing gas for combustion in the combustor to form flue gas, and then passing the flue gas to the turbine to generate power, wherein the fuel comprises a mixture of dimethyl ether, at least one alcohol and, optionally, a component selected from the group consisting of water and C1-C6 alkanes. The fuel composition used in the inventive method permits a safe and highly efficient operation of a dry low NOx combustion system, while at the same time, minimizing the generation of NOx and carbon monoxide emissions.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: December 4, 2001
    Assignee: BP Corporation North America Inc.
    Inventors: Arunabha Basu, Theo H. Fleisch, Carl A. Udovich, Alakananda Bhattacharyya, Michael J. Gradassi
  • Patent number: 6293978
    Abstract: A process for converting organic compounds using composite materials in membrane reactors. The composite materials include a gas-tight ceramic, a porous metallic support, and an interfacial zone therebetween eliminate the need for mechanical seals between two such dissimilar materials. Oxygen ion-conducting dense ceramic membranes are formed on a porous metallic alloy to provide an interfacial zone identifiable by a gradient of composition in at least one metallic element across the interfacial zone between the dense ceramic membrane and the porous support. Processes using composite materials in accordance with the invention are, for example, used for production of synthesis gas comprising carbon monoxide and molecular hydrogen, whereby the synthesis gas is, advantageously, free of deleterious and/or inert gaseous diluents such as nitrogen.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: September 25, 2001
    Assignee: BP Corporation North America Inc.
    Inventors: Mark S. Kleefisch, Carl A. Udovich, Joseph G. Masin, Thaddeus P. Kobylinski
  • Patent number: 6287432
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: September 11, 2001
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer