Patents Represented by Attorney, Agent or Law Firm Thomas S. Deibert
  • Patent number: 8343267
    Abstract: A gallium formulated ink is provided. Also provided are methods of preparing the gallium formulated ink and for using the gallium formulated ink to deposit a Group 1b/gallium/(optional indium)/Group 6a material on a substrate for use in the manufacture of a variety of chalcogenide containing semiconductor materials, such as, thin film transistors (TFTs), light emitting diodes (LEDs); and photoresponsive devices (e.g., electrophotography (e.g., laser printers and copiers), rectifiers, photographic exposure meters and photovoltaic cells) and chalcogenide containing phase change memory materials.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: David Mosley, David Thorsen
  • Patent number: 8308973
    Abstract: A selenium ink comprising a chemical compound having a formula RZ—Sex—Z?R? stably dispersed in a liquid carrier is provided, wherein the selenium ink is hydrazine free and hydrazinium free. Also provided are methods of preparing the selenium ink and of using the selenium ink to deposit selenium on a substrate for use in the manufacture of a variety of chalcogenide containing semiconductor materials, such as, thin film transistors (TFTs), light emitting diodes (LEDs); and photoresponsive devices (e.g., electrophotography (e.g., laser printers and copiers), rectifiers, photographic exposure meters and photovoltaic cells) and chalcogenide containing phase change memory materials.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 13, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: David Mosley, Kevin Calzia, Charles Szmanda
  • Patent number: 8309468
    Abstract: A method for chemical mechanical polishing of a substrate comprising a germanium-antimony-tellurium chalcogenide phase change alloy (GST) using a chemical mechanical polishing composition consisting essentially of, as initial components: water; an abrasive; a material selected from ethylene diamine tetra acetic acid and salts thereof; and an oxidizing agent; wherein the chemical mechanical polishing composition facilitates a high GST removal rate with low defectivity.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 13, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Jaeseok Lee, Yi Guo, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8309179
    Abstract: A selenium/Group 1b ink comprising, as initial components: a selenium component comprising selenium, an organic chalcogenide component having a formula selected from RZ—Z?R? and R2—SH, a Group 1b component and a liquid carrier; wherein Z and Z? are each independently selected from sulfur, selenium and tellurium; wherein R is selected from H, C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein R? and R2 are selected from a C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; and wherein the selenium/Group 1b ink is a stable dispersion.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 13, 2012
    Assignee: Rohm and Haas Electronics Materials LLC
    Inventors: Kevin Calzia, David W. Mosley, Charles R. Szmanda, David L. Thorsen
  • Patent number: 8282995
    Abstract: A selenium/Group Ib/Group 3a ink is provided, comprising, as initial components: (a) a selenium/Group Ib/Group 3a system which comprises a combination of, as initial components: a selenium; an organic chalcogenide component; a Group Ib containing substance; optionally, a bidentate thiol component; a Group 3a containing substance; and, (b) a liquid carrier component; wherein the selenium/Group Ib/Group 3a system is stably dispersed in the liquid carrier component. Also provided are methods of preparing the selenium/Group Ib/Group 3a ink and for using the selenium/Group Ib/Group 3a ink to deposit a selenium/Group Ib/Group 3a material on a substrate for use in the manufacture of a variety of chalcogenide containing semiconductor materials, such as, thin film transistors (TFTs), light emitting diodes (LEDs); and photoresponsive devices (e.g., electrophotography (e.g.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 9, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Kevin Calzia, David Mosley, David L. Thorsen
  • Patent number: 8277894
    Abstract: A selenium ink comprising selenium stably dispersed in a liquid medium is provided, wherein the selenium ink is hydrazine free and hydrazinium free. Also provided are methods of preparing the selenium ink and of using the selenium ink to deposit selenium on a substrate for use in the manufacture of a variety of chalcogenide containing semiconductor materials, such as, thin film transistors (TFTs), light emitting diodes (LEDs); and photo responsive devices (e.g., electrophotography (e.g., laser printers and copiers), rectifiers, photographic exposure meters and photo voltaic cells) and chalcogenide containing phase change memory materials.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 2, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: David Mosley, Kevin Calzia
  • Patent number: 8272922
    Abstract: A method for polishing a substrate using a pad comprising, a polymeric matrix having microspheres dispersed therein, the polymeric matrix being formed of a water-based polymer or blends thereof, wherein the polymeric matrix is applied on a permeable substrate, and wherein the polishing pad exhibits reduced defectivity and improved polishing performance are provided.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: September 25, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Chau H. Duong
  • Patent number: 8257142
    Abstract: Shape memory chemical mechanical polishing methods are provided that use shape memory chemical mechanical polishing pads having a polishing layer in a densified state, wherein the polishing pad thickness and/or groove depth is monitored and the polishing layer is selectively exposed to an activating stimulus causing a transition from the densified state to a recovered state.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: September 4, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Gregory P. Muldowney, Ravichandra V. Palaparthi
  • Patent number: 8257545
    Abstract: A chemical mechanical polishing pad is provided, comprising: a polishing layer having a polishing surface; and, a light stable polymeric endpoint detection window, comprising: a polyurethane reaction product of an aromatic polyamine containing amine moieties and an isocyanate terminated prepolymer polyol containing unreacted —NCO moieties; and, a light stabilizer component comprising at least one of a UV absorber and a hindered amine light stabilizer; wherein the aromatic polyamine and the isocyanate terminated prepolymer polyol are provided at an amine moiety to unreacted —NCO moiety stoichiometric ratio of <95%; wherein the light stable polymeric endpoint detection window exhibits a time dependent strain of ?0.02% when measured with a constant axial tensile load of 1 kPa at a constant temperature of 60° C. at 100 minutes and an optical double pass transmission of ?15% at a wavelength of 380 nm for a window thickness of 1.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 4, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Adam Loyack, Alan Nakatani, Mary Jo Kulp, David G. Kelly
  • Patent number: 8258636
    Abstract: A curable liquid polysiloxane/TiO2 composite for use as a light emitting diode encapsulant is provided, comprising: a polysiloxane prepolymer with TiO2 domains having an average domain size of less than 5 nm, wherein the curable liquid polysiloxane/TiO2 composite contains 20 to 60 mol % TiO2 (based on total solids); wherein the curable liquid polysiloxane/TiO2 composite exhibits a refractive index of >1.61 to 1.7 and wherein the curable liquid polysiloxane/TiO2 composite is a liquid at room temperature and atmospheric pressure. Also provided is a light emitting diode manufacturing assembly.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 4, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Garo Khanarian, Paul Joseph Popa, John Ell, Weijun Zhou
  • Patent number: 8257544
    Abstract: A chemical mechanical polishing pad having a polishing layer with an integral window and a polishing surface adapted for polishing a substrate selected from a magnetic substrate, an optical substrate and a semiconductor substrate, wherein the formulation of the integral window provides improved defectivity performance during polishing. Also provided is a method of polishing a substrate using the chemical mechanical polishing pad.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: September 4, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Mary Jo Kulp, Shannon Holly Williams
  • Patent number: 8257988
    Abstract: A method of making a light emitting diode (LED) having an optical element is provided, comprising: providing a curable liquid polysiloxane/TiO2 composite, which exhibits a refractive index of >1.61 to 1.7 and which is a liquid at room temperature and atmospheric pressure; providing a semiconductor light emitting diode die having a face, wherein the semiconductor light emitting diode die emits light through the face; contacting the semiconductor light emitting diode die with the curable liquid polysiloxane/TiO2 composite; and, curing the curable liquid polysiloxane/TiO2 composite to form an optical element; wherein at least a portion of the optical element is adjacent to the face.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 4, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Paul Joseph Popa, Garo Khanarian, Weijun Zhou, John R. Ell
  • Patent number: 8221196
    Abstract: Shape memory chemical mechanical polishing pads are provided, wherein the shape memory chemical mechanical polishing pads comprise a polishing layer in a densified state. Also provided are methods of making the shape memory chemical mechanical polishing pads and for using them to polish substrates.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: July 17, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Richard D. Hreha, Ravichandra V. Palaparthi, Benjamin John Vining
  • Patent number: 8118641
    Abstract: Chemical mechanical polishing pads having a window with an integral identification feature, wherein the window has a polishing face and a nonpolishing face, wherein the integral identification feature is observable through the window, and wherein the integral identification feature identifies the chemical mechanical polishing pad as a type of chemical mechanical polishing pad selected from a plurality of types of chemical mechanical polishing pads. Also provided is a method of making such chemical mechanical polishing pads and for using them to polish a substrate selected from a magnetic substrate, an optical substrate and a semiconductor substrate.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: February 21, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Mary Jo Kulp, Ethan S. Simon, Darrell String
  • Patent number: 8119506
    Abstract: A selenium/Group 3a ink, comprising (a) a selenium/Group 3a complex which comprises a combination of, as initial components: a selenium component comprising selenium; an organic chalcogenide component having a formula selected from RZ—Z?R? and R2—SH; wherein Z and Z? are each independently selected from sulfur, selenium and tellurium; wherein R is selected from H, C1-20 alkyl group, a C6-20 aryl group, a C1-20 hydroxyalkyl group, an arylether group and an alkylether group; wherein R? and R2 are selected from a C1-20 alkyl group, a C6-20 aryl group, a C1-20 hydroxyalkyl group, an arylether group and an alkylether group; and, a Group 3a complex, comprising at least one Group 3a material selected from aluminum, indium, gallium and thallium complexed with a multidentate ligand; and, (b) a liquid carrier; wherein the selenium/Group 3a complex is stably dispersed in the liquid carrier.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 21, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Kevin Calzia, David Mosley, Charles Szmanda, David L. Thorsen
  • Patent number: 8118897
    Abstract: A mix head assembly for use in the manufacture of chemical mechanical polishing pad polishing layers is provided, wherein inclusions of entrained gas inclusion defects are minimized.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 21, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: John Esbenshade, Andrew M Geiger, Paul Libbers, Samuel J November, Paul J Sacchetti, Jonathan Tracy, David Verbaro, Michael E Watkins
  • Patent number: 8119529
    Abstract: A method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises silicon dioxide; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition comprises: water, an abrasive; a diquaternary cation according to formula (I); and optionally a quaternary alkylammonium compound; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein the chemical mechanical polishing composition has a pH of 2 to 6; wherein the chemical mechanical polishing composition exhibits a silicon dioxide removal rate of at least 1,500 ?/min.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: February 21, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Zhendong Liu
  • Patent number: 8118644
    Abstract: Chemical mechanical polishing pads having a polishing layer with a polishing surface adapted for polishing a substrate are provided, wherein the polishing layer has a unique integral identification feature; wherein the unique integral identification feature is non-polish active, wherein the unique integral identification feature comprises at least two visually distinct characteristics, wherein at least one of the at least two visually distinct indicia is a non-color based indicia, wherein one of the at least two visually distinct indicia is a color based indicia, and wherein the at least two visually distinct characteristics are selected to uniquely identify the chemical mechanical polishing pad as a type of chemical mechanical polishing pad selected from a plurality of types of chemical mechanical polishing pads; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate. Also provided is a method of making such polishing layers and for using them to polish a substrate.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 21, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Mary Jo Kulp, Darrell String
  • Patent number: 8088467
    Abstract: Curable compositions are disclosed. Also disclosed are optical media comprising said curable compositions when cured and methods of making such optical media.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: January 3, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Lujia Bu, Edward C. Greer, Georg R. Kestler, Alan I. Nakatani, Charles R. Szmanda
  • Patent number: 8084543
    Abstract: Light-scattering compositions comprising diffuser polymer particles are disclosed. Also disclosed are methods of making and using the light-scattering compositions.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: December 27, 2011
    Assignee: Rohm and Haas Company
    Inventors: Edward E. LaFleur, Jiun-Chen Wu