Patents Represented by Attorney Timothy M. Schaeberle
  • Patent number: 6751987
    Abstract: Burners (14) are used to make glass bodies (19) from OMCTS. The burners have six concentric regions. Putting certain gases through the regions results in thicker bodies than can be achieved with existing techniques and with improved efficiency.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 22, 2004
    Assignee: Corning Incorporated
    Inventors: Laura J. Ball, Raymond E. Lindner, Mahendra Kumar Misra, Dale R. Powers, Michael H. Wasilewski
  • Patent number: 6754429
    Abstract: The invention provides a method of making optical fiber devices.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: June 22, 2004
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Joseph F. Schroeder, Alexander Streltsov, Edward F. Murphy
  • Patent number: 6735981
    Abstract: Burners and methods for producing fused silica members. The burner includes seven gas-emitting regions, including four regions for emitting a mixture of oxygen and combustible gas.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: May 18, 2004
    Assignee: Corning Incorporated
    Inventors: Thomas A. Collins, Chunhong He, Christine E. Heckle, Raymond E. Lindner, Michael H. Wasilewski
  • Patent number: 6731839
    Abstract: The present invention provides photonic devices utilized in optical telecommunications. The photonic devices include photosensitive bulk glass bodies which contain Bragg gratings, particularly with the ultraviolet photosensitive bulk glass bodies directing optical telecommunications wavelength range bands. Preferably the ultraviolet photosensitive bulk glass bodies are batch meltable alkali boro-alumino-silicate bulk glass bodies. One embodiment of the invention relates to an optical element including a transparent photosensitive bulk glass having formed therein a non-waveguiding Bragg grating; and a optical element optical surface for manipulating light. Desirably, the photosensitive bulk glass has a 250 nm absorption less than 10 dB/cm.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: May 4, 2004
    Assignee: Corning Incorporated
    Inventors: Venkata A. Bhagavatula, Nicholas F. Borrelli, Monica K. Davis, Edward F. Murphy
  • Patent number: 6714354
    Abstract: Graded index lenses, methods, and devices are disclosed. In certain embodiments, he lenses are made from generally cylindrical glass members having a radially varying refractive index and have a pitch less than about 0.23. Other embodiments relate to graded index lenses having a pitch between about 0.23 and 0.25 and an index gradient less than or equal to 0.3.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: March 30, 2004
    Assignee: Corning Incorporated
    Inventor: Donald M. Trotter, Jr.
  • Patent number: 6689706
    Abstract: Fused silica articles exhibiting improved internal transmission and decreased absorption change when irradiated with a laser when compared with fused silica articles containing lower levels of aluminum. The articles also exhibit induced transmission when irradiated with a laser.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: February 10, 2004
    Assignee: Corning Incorporated
    Inventor: Daniel R. Sempolinski
  • Patent number: 6672111
    Abstract: Methods and apparatus for adding metals such as aluminum to fused silica glass articles are disclosed. The methods and apparatus allow for controlled, low level addition of metals into fused silica glass articles. The fused silica glass articles containing added aluminum exhibit improved internal transmission and decreased absorption change when irradiated with a laser.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: William P. Peters, Merrill F. Sproul, Daniel R. Sempolinski, Michael H. Wasilewski
  • Patent number: 6655850
    Abstract: A hybrid fiber expanded beam connector and methods for making and using the hybrid fiber expanded beam connector are described herein. Basically, the hybrid fiber expanded beam connector can be used to connect dissimilar fibers such as single mode fibers that have different mode field diameters (MFDs) or different effective areas. In particular, the hybrid fiber expanded beam connector includes a first lensed optical fiber that is optically coupled to a second lensed optical fiber but physically separated from the second lensed optical fiber. The first lensed optical fiber including one type of fiber is capable of expanding a light beam traveling therein and outputting a collimated light beam. The second lensed optical fiber including another type of fiber is capable of receiving the collimated light beam and focusing the received light beam such that the light beam travels from the first lensed optical fiber to the second lensed optical fiber.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: December 2, 2003
    Assignee: Corning Incorporated
    Inventors: Larry G. Mann, Ljerka Ukrainczyk
  • Patent number: 6656398
    Abstract: A method for forming a pattern in a film carried on a substrate includes depositing a layer of alkyl silane on a surface of a mold having a pattern, bringing the mold in contact with the film on the substrate and pressing the mold into the film so as to emboss the pattern on the mold in the film, wherein the film comprises a thermoplastic polymer, and removing the mold from the film.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: December 2, 2003
    Assignee: Corning Incorporated
    Inventors: William R. Birch, Alain R. E. Carre, Paul D. Frayer, Kenjiro Hasui
  • Patent number: 6632025
    Abstract: A high power expanded beam and methods for making and using the high power expanded beam connector are described herein. Basically, the high power expanded beam connector includes a first lensed optical fiber that is optically coupled to a second lensed optical fiber but physically separated from the second lensed optical fiber. The first lensed optical fiber is capable of expanding a light beam traveling therein and outputting a collimated light beam. The second lensed optical fiber is capable of receiving the collimated light beam and focusing the received light beam such that the light beam travels from the first lensed optical fiber to the second lensed optical fiber. In a similar manner, the high power expanded beam connector can transmit a light beam from the second lensed optical fiber to the first lensed optical fiber.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventor: Ljerka Ukrainczyk
  • Patent number: 6632758
    Abstract: Disclosed is a substantially transparent glass-ceramic ceramic, and a method for making a glass-ceramic, exhibiting an aluminogallate spinel crystal phase and having a glass-ceramic composition that lies within the SiO2—Ga2O3—Al2O3—K2O—Na2O— system and particularly consisting essentially, in weight percent on an oxide basis, of 25-55% SiO2, 9-50% Ga2O3, 7-33% Al2O3, 0-20% K2O, 0-15% Na2O, 0-6 Li2O and 5-30% K2O+Na2O, the glass ceramic microstructure containing a crystal phase comprising at least 5%, by weight, of aluminogallate spinel crystals. Another aspect disclosed is optical element selected from the group consisting of an optical fiber, a gain or laser medium, and an amplifier component, a saturable absorber, with the element comprising a transparent glass-ceramic of the same composition and containing a crystallinity of at least about 5% by weight of aluminogallate spinel crystals.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Linda R. Pinckney, Bryce N. Samson
  • Patent number: 6633700
    Abstract: A method for aligning optical fibers with an optical component includes making a lens on an end of each optical fiber to form a microlensed fiber and arranging the microlensed fibers such that an optical axis of each of the optical fibers is oriented along a common direction. The method further includes positioning each lens a selected distance from the optical component so as to couple light into and out of the optical component.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventors: Robert A. Bellman, Ronald L. Burt, Donald M. Trotter, Ljerka Ukrainczyk
  • Patent number: 6630418
    Abstract: Fused silica articles containing at least 50 ppb aluminum are disclosed. The fused silica articles containing these levels of aluminum exhibit improved internal transmission and decreased absorption change when irradiated with a laser when compared with fused silica articles containing lower levels of aluminum.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 7, 2003
    Assignee: Corning Incorporated
    Inventor: Daniel R. Sempolinski
  • Patent number: 6606885
    Abstract: A glass polarizer and a method of making the polarizer, the polarizer being produced from an R2O—Al2O3—B2O3—SiO2 glass containing limited amounts of ZrO2 and TiO2, and having a silver halide liquidus temperature and a rutile liquidus temperature, both temperatures being not over 995° C.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: August 19, 2003
    Assignee: Corning Incorporated
    Inventors: Michael D. Harris, Thomas G. Havens, William E. Horsfall, David J. Kerko
  • Patent number: 6594419
    Abstract: A tapered lensed fiber includes a tapered multimode fiber having a gradient-index core and an optical fiber attached to the tapered multimode fiber. A method for forming a tapered lensed fiber includes attaching an optical fiber to a multimode fiber having a gradient-index core, applying heat to a surface of the multimode fiber, and pulling the multimode fiber into a taper. The method also allows for forming a tapered polarization-maintaining fiber while preserving stress rods and polarization isolation properties of the polarization-maintaining fiber.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: July 15, 2003
    Assignee: Corning Incorporated
    Inventors: Ljerka Ukrainczyk, Debra L. Vastag
  • Patent number: 6588230
    Abstract: Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400° C.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: July 8, 2003
    Assignee: Corning Incorporated
    Inventors: Meryle D. M. Adler, John T. Brown, Mahendra K. Misra
  • Patent number: 6583394
    Abstract: Apparatus and a method for processing a ceramic material includes placing the ceramic material in a microwave heating apparatus having a microwave cavity; subjecting the ceramic material to a combination of microwave radiation and conventional heat; and controlling the uniformity of the processing of the ceramic material so as to avoid deformations and cracking by applying the microwave radiation to the ceramic material through at least one branched slotted waveguide which substantially uniformly distributes the microwave radiation throughout the microwave cavity.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: June 24, 2003
    Assignee: Corning Incorporated
    Inventors: Carlos R. Araya, Magdy F. Iskander, Elizabeth M. Vileno
  • Patent number: 6576380
    Abstract: The present invention relates to reflective masks and their use for reflecting extreme ultraviolet soft x-ray photons to enable the use of extreme ultraviolet soft x-ray radiation projection lithographic methods and systems for producing integrated circuits and forming patterns with extremely small feature dimensions. The projection lithographic method includes providing an illumination sub-system for producing and directing an extreme ultraviolet soft x-ray radiation &lgr; from an extreme ultraviolet soft x-ray source; providing a mask sub-system illuminated by the extreme ultraviolet soft x-ray radiation &lgr; produced by the illumination sub-system and providing the mask sub-system includes providing a patterned reflective mask for forming a projected mask pattern when illuminated by radiation &lgr;.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 10, 2003
    Assignee: Corning Incorporated
    Inventors: Claude L. Davis, Jr., Kenneth E. Hrdina, Robert Sabia, Harrie J. Stevens
  • Patent number: 6563639
    Abstract: Polarized glass articles and method of manufacturing polarizing glass articles are disclosed. Optical isolators using the polarizing glass articles have reduced coupling and surface losses when compared with conventional optical isolators.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: May 13, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Donald M. Trotter, Jr.
  • Patent number: 6562284
    Abstract: This invention relates to a method of producing a honeycomb ceramic body exhibiting a predetermined radial dimension comprising producing a green ceramic honeycomb body that exhibits a radial dimension at least 9% greater than the predetermined radial dimension and a cell density of at least 500 cpsi. The method further involves shrinking the green body during firing to form a sintered honeycomb ceramic body exhibiting the final predetermined radial dimension. This invention also relates to a method of producing a ceramic body comprising the following steps: (a) compounding and plasticizing a ceramic raw material mixture and forming the plasticizable raw material mixture into a green ceramic body by extrusion through an extrusion die; (b) drying the green body and thereafter firing the green body at a time and at a temperature sufficient to sinter the ceramic body resulting in a radial shrinkage of the green ceramic body in the radial dimension due to the firing of at least 9%.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: May 13, 2003
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Gregory A. Merkel, Brian E. Stutts