Patents Represented by Attorney Walter M. Douglas
  • Patent number: 8039728
    Abstract: The invention is directed to a thermoelectric module that utilizes a glass-ceramic material in place of the alumina and aluminum nitride that are commonly used in such modules. The glass-ceramic has a coefficient of thermal expansion of <10×10?7/° C. The p- and n-type thermoelectric materials can be any type of such materials that can withstand an operating environment of up to 1000° C., and they should have a CTE comparable to that of the glass-ceramic. The module of the invention is used to convert the energy wasted in the exhaust heat of hydrocarbon fueled engines to electrical power.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: October 18, 2011
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Paulo Gaspar Jorge Marques
  • Patent number: 8021755
    Abstract: A low thermal expansion glass includes a base glass material having a front surface, a back surface, and a thickness and a glass coating material applied on at least the front surface of the base glass material. The base glass material consists essentially 10 wt % to 20 wt % titania and 80 wt % to 90 wt % silica. The glass coating material also consists essentially of titania and silica, but the total amount of titania in the glass coating material is lower than the total amount of titania in the base glass material. A silica-titania glass element suitable for extreme ultraviolet lithography applications consists of 12 wt % to 20 wt % titania and 80 wt % to 88 wt % silica and has a coefficient of thermal expansion of essentially 0 ?L/L in a temperature range of ?20° C. to +100° C.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 20, 2011
    Assignee: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Michael A Mueller, Barbara L Stainbrook
  • Patent number: 8021999
    Abstract: In one aspect the invention is directed to a machinable glass-ceramic having a high degree of crystallinity (greater than 50 Vol. %), high mechanical strength (MOR>150 MPa) In accordance with the invention, the machinable glass-ceramics described herein consists essentially of, in weight percent, 35-55% SiO2, 6-18% Al2O3, 12-27% MgO, 3-12% F, 5-25% SrO, 0-20% BaO and 1-7% K2O. The machinable glass-ceramics of the invention have a dielectric constant of <8 (typically being in the range of 6-8) at 25° C. and 1 KHz; a loss tangent of <0.002 at 25° C. and 1 MHz; a CTE in the range of 80-120×10?7/° C. in the temperature range of 25-300° C.; a Poisson's ration of approximately 0.25; and a porosity of 0%.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: September 20, 2011
    Assignee: Corning Incorporated
    Inventor: George Halsey Beall
  • Patent number: 7961383
    Abstract: The invention is directed to elements having fluoride coated surfaces having multiple layers of fluoride material coatings for use in laser systems, and in particular in laser systems operating at wavelength <200 nm. In a particular embodiment the invention is directed to highly reflective mirrors for use in wavelengths <200 nm laser systems. The invention describes the mirrors and a method of making them that utilizes a plurality of periods of fluoride coatings, each period comprising one layer a high refractive index fluoride material and one layer low refractive index fluoride material, and additionally at least one layer of an amorphous silica material. The silica material can be inserted between each period, inserted between a stack consisting of a plurality of periods, and, optionally, can also be applied as the final layer of the finished element to protect the element.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Jue Wang, Horst Schreiber
  • Patent number: 7960009
    Abstract: A porous ceramic substrate includes a first phase of microcracked cordierite ceramic material and a second phase of non-cordierite metal oxide particles dispersed in the cordierite ceramic, wherein at least a portion of the interface between the first and second phases is wetted by glass and the particles of the second phase have a size in the range of from about 0.1 to about 10 ?m.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose
  • Patent number: 7939457
    Abstract: A low expansion glass substrate includes titania and silica and has a thermal expansivity with an average gradient less than 1 ppb/° C./° C. in a temperature range of 19° C. to 25° C.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Robert Sabia
  • Patent number: 7914718
    Abstract: Porous ceramic articles may be produced by using a gas as a pore former, where the gas is injected into a ceramic precursor batch material and mixed. Pressure is then applied to mixture such that the gas liquefies. The pressure is maintained during formation of a green body, maintaining the gas in a liquefied state. After formation of the green body, the pressure is removed whereby the gas returns to a gaseous state, creating pores in the green body. The green body may then be fired to produce a porous ceramic article.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 29, 2011
    Assignee: Corning Incorporated
    Inventors: Kevin Robert Brundage, Robert Leonard Bush, Roger A Rose, Yuxin Tang
  • Patent number: 7875565
    Abstract: The invention is directed to transparent glass-ceramic materials for use in transparent armor systems. Applications include armor systems for ground vehicles and aircraft as well as personal protective equipment. The glass-ceramic materials according to the invention exhibit a ballistic limit vs. areal density line slope of 1.0 or greater, preferably 1.1 or greater and more preferably 1.2 or greater. The crystalline phase of the glass ceramic materials may include ?-quartz, spinel, spinel solid solutions, mullite and phases known in the art to be transparent.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: January 25, 2011
    Assignee: Corning Incorporated
    Inventors: Linda Ruth Pinckney, Jian-Zhi Jay Zhang, Carl Franklin Cline
  • Patent number: 7829489
    Abstract: The present invention describes a composition, method and article for a photomachinable glass having a coefficient of thermal expansion from less than 6×10?6/° C. in the temperature range of 0° C. to 300° C. The photomachinable glass composition is a low expansion glass having an amorphous glass phase and crystalline phases selected from the group consisting of spudomene and lithium disilicate.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: November 9, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Kathryn L Goetschius, David Lathrop Morse, Charlene Marie Smith
  • Patent number: 7817340
    Abstract: An ultra-thin polarizing glass article having two polarizing glass layers separated by a non-polarizing central region. The polarizing glass layers contain stretched or elongated metal particles and the non-polarizing central region contains elongated or stretched metal halide particle. The polarizing article has a thickness less than 200 micrometers.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: October 19, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, David G. Grossman, Larry G. Mann, Jeanne M. Mordarski
  • Patent number: 7799711
    Abstract: The invention is directed to photomachinable glass compositions having a controllable or tunable photosensitivity, and to a method for making such compositions. The compositions of the invention contain titania (TiO2) in an amount in the range of greater than 0.01 wt. % to 2 wt. % added to any known photomachinable glass composition. In one embodiment the TiO2 in an amount in the range of greater than 0.01 wt. % to 1 wt. %. An example of a photomachinable glass of the invention is one having a composition having, in weight percent (wt. %) of 65-80% SiO2, 15-20% Li2O, 1-4% Na2O, 1-4% K2O, 2-10% Al2O3, 0-3% ZnO, 0-0.15% Sb2O3, 0-0.015% CeO2, 0-0.001% Au, 0-0.015% Ag and >0.01% to 2% TiO2, and the sum of Au+Ag is greater than zero. In particular embodiment the TiO2 is in the range of >0.01% to 1%.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Kathryn L Goetschius, Charlene Marie Smith
  • Patent number: 7683450
    Abstract: The invention is directed to preparing optical elements having a thin, smooth, dense coating or film thereon, and a method for making such coating or film. The coated element has a surface roughness of <1.0 nm rms. The coating materials include hafnium oxide or a mixture of hafnium oxide and another oxide material, for example silicon dioxide. The method includes the use of a reverse mask to deposit the coating or film on a rotating substrate.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 23, 2010
    Assignee: Corning Incorporated
    Inventors: Gary Allen Hart, Robert LeRoy Maier, Jue Wang
  • Patent number: 7674735
    Abstract: The invention is directed to highly crystalline, frit-sintered glass-ceramic materials and seals made using them that are suitable for solid oxide fuel cell applications. The seals have a coefficient of thermal expansion in the range of 70-130×10?7° C., preferably 85-115×10?7° C. The glass-ceramic materials have a crystalline component and a glass component, the crystalline component being >50% of the glass-ceramic and the glass component being <50%. In one preferred embodiment the crystalline component is >75%. Regarding the crystalline component only, >50% of the crystals in the crystalline component of the glass-ceramic has a structure selected from the structural groups represented by walstromite, cyclowollastonite, ?-(Ca,Sr)SiO3, kalsilite, kaliophilite and wollastonite (the primary crystalline phase) and the remaining <50% of the crystalline component is at least one secondary crystalline phase.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: March 9, 2010
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, Sasha Marjanovic, Linda Ruth Pinckney, Dell Joseph St Julien
  • Patent number: 7648656
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 19, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, David John McEnroe, Joseph Francis Schroeder, III
  • Patent number: 7626700
    Abstract: A crystal optical material is illuminated at a wavelength of light that does not ionize the crystal optical material. Birefringence is measured between a plurality of voxels within the crystal optical material having spatial dimensions small enough to distinguish optical propagations of the light encountering boundary regions between subgrains of the crystal mosaic from optical propagations of the light through the subgrains themselves. The measured birefringence is evaluated for quantifying a characteristic of the crystal matrix. Metrics describing the crystal matrix are associated with performance of the crystal optical material.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: December 1, 2009
    Assignee: Corning Incorporated
    Inventors: William Rogers Rosch, Horst Schreiber
  • Patent number: 7618908
    Abstract: The invention is directed to a method for preparing visible light optical polarizers using a non-halide silver salt and any glass composition that the non-halide silver salts is soluble, provided that the glass composition, including the silver salt, was a halide content that is, on a molar basis, 10% or less than the silver content, on a molar basis, of the glass composition. The silver containing glass is hydrogen reduced prior to stretching to form an optical polarizer. The invention enables one to form a visible light polarizer having a polarizing layer thickness in the range 10-40 ?m in which the silver particles have a surround index sufficiently removed from the blue polarizer region to allow good contrast.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: November 17, 2009
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, David John McEnroe, Joseph Francis Schroeder, III
  • Patent number: 7589040
    Abstract: The present invention provides doped titania-doped silica glass articles having low thermal expansions and low variations in thermal expansion. According to one embodiment of the invention, a titania-doped silica glass article has a titania content of between about 5 wt % and about 9 wt %; a coefficient of thermal expansion of between about ?30 ppb/° C. and about +30 ppb/° C. at a temperature between 15° C. and 30° C.; and a variation in coefficient of thermal expansion of less than about 5 ppb/° C. at a temperature between 15° C. and 30° C.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 15, 2009
    Assignee: Corning Incorporated
    Inventors: Steven B. Dawes, Richard M. Fiacco, Kenneth E. Hrdina, Michael H. Wasilewski
  • Patent number: 7575798
    Abstract: A substrate includes an opaque chrome coating on a surface of the substrate dry-etched to form an aperture, wherein chrome in the aperture is below detectable limit. A method of forming an opaque chrome coating on a substrate includes depositing an initial thickness of the opaque chrome coating on the substrate without ion-assist or with undetectable ion-assist and depositing the remainder of the opaque chrome coating with or without ion-assist. In one embodiment the invention is directed to an apertured optical element having a substrate transmissive to light and an opaque chrome coating on the substrate defining an aperture. Three- and four-layer opaque coatings of various materials are disclosed, including three-layer chrome/chrome oxide/chrome coatings.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: August 18, 2009
    Assignee: Corning Incorporated
    Inventors: Robert A. Bellman, Ljerka Ukrainczyk, Jose M. Quintal, Paul A. Sachenik
  • Patent number: 7561611
    Abstract: The invention is directed to elements used in high power laser lithographic systems operating at below 250 nm, and in particular to elements that have a coating of selected materials to extend lifetime of the elements; and to a method of preparing the extended lifetime elements. The invention is particularly directed to gratings and mirrors that are coated with silicon dioxide, aluminum oxide or fluorinated silicon dioxide. The coatings of the invention attain their extended life as a result of being deposited while being simultaneously bombarded with an energetic ion plasma.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: July 14, 2009
    Assignee: Corning Incorporated
    Inventor: Robert L. Maier
  • Patent number: 7510989
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: March 31, 2009
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, Sasha Marjanovic, David John McEnroe, Katherine Rose Rossington, Joseph Francis Schroeder, III